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Abstract

While the mechanisms underlying quantitative resistance of plants to pathogens are still not fully elucidated, the Pathogen-
Associated Molecular Patterns (PAMPs)-triggered response model suggests that such resistance depends on a dynamic
interplay between the plant and the pathogen. In this model, the pathogens themselves or elicitors they produce would
induce general defense pathways, which in turn limit pathogen growth and host colonisation. It therefore suggests that
quantitative resistance is directly linked to a common set of general host defense mechanisms, but experimental evidence is
still inconclusive. We tested the PAMP-triggered model using two pathogens (Pectobacterium atrosepticum and
Phytophthora infestans) differing by their infectious processes and five potato cultivars spanning a range of resistance
levels to each pathogen. Phenylalanine ammonia-lyase (PAL) activity, used as a defense marker, and accumulation of
phenolics were measured in tuber slices challenged with lipopolysaccharides from P. atrosepticum or a concentrated culture
filtrate from P. infestans. PAL activity increased following treatment with the filtrate but not with lipopolysaccharides, and
varied among cultivars. It was positively related to tuber resistance to P. atrosepticum, but negatively related to tuber
resistance to P. infestans. It was also positively related to the accumulation of total phenolics. Chlorogenic acid, the main
phenolic accumulated, inhibited growth of both pathogens in vitro, showing that PAL induction caused active defense
against each of them. Tuber slices in which PAL activity had been induced before inoculation showed increased resistance
to P. atrosepticum, but not to P. infestans. Our results show that inducing a general defense mechanism does not necessarily
result in quantitative resistance. As such, they invalidate the hypothesis that the PAMP-triggered model alone can explain
quantitative resistance. We thus designed a more complex model integrating physiological host response and a key
pathogen life history trait, pathogen growth, to explain the differences between the two pathosystems.
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Introduction

Host resistance was, is and will be of major importance to

control epidemic plant pathogens. Van der Plank [1], and a

number of authors after him [2,3], have identified two major types

of resistance in plant pathosystems, with reference to the

development of disease symptoms. While qualitative resistance

often based on pathogen recognition through gene-for-gene

interactions and leading to programmed cell death, results in a

complete exclusion of the pathogen and prevents its spread in host

tissue, quantitative resistance is expressed in compatible interac-

tions and is characterised by a reduced rate of pathogen and

symptom development. Although quantitative resistance is wide-

spread, there is still a need for more profound insights into its

mechanisms, which remain poorly understood [4].

Plant resistance to pathogens is often described to be the

outcome of a co-evolutionary dynamic equilibrium between

Pathogen-Associated Molecular Patterns (PAMPs) and effector-

triggered induction and suppression of plant defense [5]. In

Solanaceae, the nature of plant defenses to pathogens does not

depend on the type of interaction (compatible or incompatible),

but these defenses are generally induced earlier and to a greater

extent in incompatible than in compatible interactions [6]. This is

particularly true for the activation of phenylalanine ammonia-

lyase (PAL) during the interaction of potato tubers with compatible

or incompatible races of Phytophthora infestans [7].

PAL, the key enzyme of the phenylpropanoid pathway,

catalyses the transformation of phenylalanine into cinnamic acid.

Cinnamic acid is the core molecule for the synthesis of phenolics,

which have been shown to be involved in defense reactions, either

as physical and chemical barriers or by acting as signal molecules

[8].

The hypothesis underlying this work, consistent with the

PAMP-triggered response model, is that quantitative resistance

to different pathogens is conditioned by quantitative differences in

the kinetics or intensity of the same defense mechanisms induced

by either the pathogen or by elicitors it produces. If correct, this

hypothesis predicts that resistant host genotypes should generate a

higher level of general defense mechanisms than more susceptible

ones when challenged by pathogen elicitors. We tested this
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prediction using two pathosystems involving a single host and two

pathogens differing in infectious processes, and focusing on one

major general defense pathway and its key enzyme. More

specifically, our objective was to show whether there is a relation

between the level of resistance to a given pathogen, PAL activity

induced by elicitors, and subsequent synthesis of phenolics, and

whether this relation is the same for different pathogens.

Our strategy was to determine simultaneously the resistance

levels of five potato cultivars against Pectobacterium atrosepticum and

P. infestans and the PAL activity induced by elicitors derived from

these pathogens. The experiments were carried out on tubers from

distinct batches differing in year of production and time of storage.

This experimental system exploits i) differences in levels of

quantitative resistance among cultivars of potato (Solanum tuberosum)

against the biotrophic oomycete P. infestans [9] and the pectinolytic

bacterium P. atrosepticum [10], and ii) earlier evidence that

quantitative resistance of potato to these pathogens is modulated

by changes in phenolic metabolism during the interaction

[4,11,12,13,14,15,16], although conclusive direct demonstration

of the antimicrobial properties of total or specific phenolics is still

lacking. It was designed to overcome two major limitations of

earlier reports relative to the hypothesis at hand. First, because

most of these studies are limited to one or two potato cultivars and

to a single pathogen, they do not allow to unequivocally

discriminate the possible contributions of induced defense from

that of the genetic background in the expression of resistance, nor

to extrapolate the generality of findings to different pathosystems.

Using a range of cultivars with different combinations of

quantitative resistance to the two pathogens is intended to separate

‘resistance’ from ‘cultivar’ effects. Second, actual resistance levels

were usually not measured directly on the plant material

experimented, but deduced from previously published informa-

tion. Since the physiological state of tubers has been shown to

affect both resistance levels to P. atrosepticum and P. infestans [17]

and defense related physiological changes [18], published

information might thus not reflect exactly the quantitative

resistance of the hosts under the conditions of the experiments.

We therefore measured defense and resistance on the same plant

material, and repeated the experiments on batches of tubers

harvested in different years and stored for different durations, to

discern ‘resistance’ from ‘physiological status’ effects.

Results

Disease severity caused by Pectobacterium atrosepticum

and Phytophthora infestans varies among potato cultivars
To establish a relative ranking of resistance level among potato

cultivars, symptom intensity (rot weight for P. atrosepticum and

discolorations for P. infestans) was measured in artificially

inoculated tubers of five cultivars, chosen from previously available

data as displaying a range of quantitative resistance to both

pathogens (Table 1). Three batches of tubers from different

harvests and/or storage durations were used for the experiments.

The pathogenicity biotest of P. atrosepticum used proved robust,

since rot severities did not differ significantly between the two

independent experiments (F= 0.0057, P= 0.940) performed on

tubers from a single batch (batch C), and no significant

‘experiment x cultivar’ interaction (F = 2.0519, P= 0.089) was

detected. There were significantly different levels of soft rot

between cultivars (F= 22.5016, P,0.001) and tuber batches

(F = 24.1858, P,0.001), but no significant ‘batch x cultivar’

interaction (thus removed from the final model). P. atrosepticum

caused in all batches the smallest amount of soft rot on Kerpondy,

and usually the most on Ackersegen (Figure 1). For each cultivar,

rot severity did not differ significantly between the two batches of

‘old’ tubers (batches A and C), and was in most cultivars

significantly higher than in the batch of ‘young’ tubers (batch B).

Rot severity in ‘old’ tubers of Ackersegen, BF15, Bintje and

Saturna did not differ significantly, whereas BF15 had lower levels

of soft rot than Ackersegen and Bintje in ‘young’ tubers.

The pathogenicity biotest of P. infestans resulted in unstable

rankings between cultivars for tuber blight severity among

independent replicate inoculations, and generated a statistically

significant ‘experiment x cultivar’ interaction (F= 6.6088,

P,0.001). This instability was also apparent between different

batches, as shown by the statistically significant ‘batch x cultivar’

interaction (F= 11.7613, P,0.001) when all three groups of tubers

were considered together. Therefore, the interpretation had to be

made separately for each batch.

In all three batches, BF15 had (as expected) the highest blight

severity, although it did not differ significantly from all other

cultivars in batch C, and from Ackersegen in batch A (Figure 1).

The behaviour of Kerpondy and Saturna was also consistent

with their expected intermediate levels of susceptibility,

although they did not differ significantly from that of Ackerse-

gen in batch C. The main sources for the batch x cultivar

interaction stemmed from the erratic behaviour of Ackersegen,

and to a lesser extent of Bintje. Ackersegen, deemed to have

high tuber resistance to P. infestans (Table 1), was unexpectedly

susceptible in batch A, but conformed to expectations in batches

B and C. In an opposite way, Bintje was generally more resistant

than expected, except in batch C.

PAL activity is induced by a concentrated culture filtrate
of P. infestans, but not by lipopolysaccharides of P.
atrosepticum
To induce plant defense, parenchymatous tuber tissue was

treated with elicitor preparations: LPS from P. atrosepticum and

CCF from P. infestans (Figure 2).

PAL activity in CCF-treated samples was significantly higher

than in LPS-treated samples (t =24.818, P,0.001) and in water-

Table 1. Published levels of potato tuber resistance to soft rot (Pectobacterium atrosepticum) and late blight (Phytophthora
infestans) assessed in laboratory tests.

Disease Ackersegen BF15 Bintje Kerpondy Saturna

Tuber blight (1) High Very low to low Low High to very high Medium

Soft rot (2) Low Medium to low Medium High ND (3)

(1)From the SASA tests in the EuroPotato database (www.europotato.org).
(2)From Pasco et al. [10]
(3)Not determined.
doi:10.1371/journal.pone.0023331.t001
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treated controls (t = 5.817, P,0.001). This induction of PAL by

CCF was observed in all cultivars, as shown by the non significant

interaction between treatments and cultivars (removed from the

final model). By contrast, PAL activity in LPS-treated samples did

not differ significantly from that in the water-treated controls

(t = 0.999, P= 0.579) (Figure 2). PAL activity was significantly

highest in batch B (‘younger’ tubers), lowest in batch A and

intermediate in batch C. The relative behaviour of cultivars was

generally consistent among the different batches, although a

statistically significant interaction was detected in the ANOVA

(F=3.4187, P,0.001). The main source of this interaction was

probably due to Bintje, which showed a lower induction of PAL by

CCF and even a decreased PAL activity after LPS treatment in

batch B, but not in batches A and C.

Figure 1. Disease severity caused by Pectobacterium atrosepticum and Phytophthora infestans in artificially inoculated potato tubers.
For P. atrosepticum (A), rot weight was measured 5 days after inoculation of half tubers; for P. infestans (B), disease severity was expressed as the
reflective density deduced with the image analysis software ImageJ from levels of grey recorded on tuber slices scanned 15 days after inoculation
with the pathogen. Experiments were performed on tubers from five potato cultivars (ac =Ackersegen, bf = BF15, bi = Bintje, ke = Kerpondy,
sa = Saturna), produced in 2008 and 2009. Tubers produced in 2008 were used after 8 months of storage (tuber batch A), tubers produced in 2009
were used after 2 months (tuber batch B) and after 10 months (tuber batch C) of storage. Data for batch C are means from two replicate experiments
(vs. one for tuber batches A and B); for each cultivar and treatment, five tubers were used in each experiment. Bars correspond to means 6 standard
error. Different letters above bars indicate significant differences between means of cultivars within a batch (Tukey’s test, p,0.05).
doi:10.1371/journal.pone.0023331.g001

Figure 2. Phenylalanine ammonia-lyase activity in protein extracts from elicitor-treated parenchymatous potato tuber tissue.
Activity was measured after 7.5 h of contact with either water as the control (white bars) or elicitors such as a concentrated culture filtrate (CCF) from
Phytophthora infestans (black bars) or purified lipopolysaccharides (LPS) from Pectobacterium atrosepticum (grey bars). Potato cultivars
(ac =Ackersegen, bf = BF15, bi = Bintje, ke = Kerpondy, sa = Saturna) used were produced in 2008 and 2009. Tubers produced in 2008 were used
after 8 months of storage (batch A), tubers produced in 2009 were used after 2 months (batch B) and after 10 months (batch C) of storage. Data for
batch C are means from two replicate experiments (vs. one for batches A and B); in each experiment, for each cultivar and treatment, four disks from
different tubers were pooled and aliquoted to constitute four different samples. Bars represent the means 6 standard error of phenylalanine
ammonia-lyase activity in at least two samples per treatment and cultivar combination. Stars above bars indicate significant differences between the
control and tuber tissue treated with the concentrated culture filtrate or lipopolysaccharides, respectively (Dunnett’s test, p,0.05).
doi:10.1371/journal.pone.0023331.g002
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PAL activity varies among potato cultivars
Significant differences between PAL activities were observed

among cultivars (F= 88.6205, P,0.001), with generally highest

levels in BF15 and Kerpondy and lowest levels in Ackersegen

(Figure 2). This was true both in control and CCF-treated samples,

as evidenced by the non-significant statistical interaction between

cultivars and treatments.

Relations between PAL activity and disease severity
depend on the pathosystem
Symptoms of P. atrosepticum decreased with increasing PAL

activities, whereas symptoms of P. infestans increased with PAL

activity (Figure 3). The shape of the relationship did not depend on

the source of PAL, as shown by identical slopes in CCF-treated

and in control (or LPS-treated) samples. The lack of significant

interactions in the covariance analysis between treatments and

batches (removed from the final model) strongly suggest that these

relations are consistent across tubers of different physiological ages.

There were no significant differences among the slopes of the

regression lines in different batches in P. infestans, while the slope of

the relationship was significantly higher in the younger tubers

(batch B) than in some of the older ones (batch C) for P.

atrosepticum.

Disease severity due to P. atrosepticum, but not P.
infestans, is reduced in tubers with pre-induced PAL
activity
Pathogenicity tests were carried out on tuber slices from cultivar

Bintje where PAL activity was induced by CCF 7.5 h before

inoculation. As expected, PAL activity was increased in CCF-

treated slices compared to the water treated control (t = 3.476,

P,0.01) (Figure 4, A). Increased PAL activity at the time of

pathogen inoculation was associated with decreased disease

severity caused by P. atrosepticum (t =23.223, P,0.01), (Figure 4,

B). However, CCF-treatment did not affect significantly disease

caused by P. infestans (t = 0.942, P.0.1), (Figure 4, C).

PAL activity is positively related to subsequent
accumulation of phenolics
Analysis of covariance revealed a significant, positive relation

between PAL activity and total phenolic content. This relation was

consistent, as shown by identical slopes in all batches and

treatments, despite the higher PAL activity in i) ‘young’ tubers

from batch B than in ‘old’ tubers from batch C and ii) in the

presence of CCF compared to other treatments (Figure 5).

Chlorogenic acid inhibits in vitro growth of P.
atrosepticum and P. infestans
Chlorogenic acid, the main phenolic molecule accumulated

following CCF treatment (HPLC analysis; data not shown), slowed

down the growth of P. atrosepticum and P. infestans when added to

the culture medium at an initial concentration of 350 mg.ml21

(Figure 6). At the lower concentration of 200 mg.ml21, growth

inhibition was diminished and only significantly different from the

water treated control for P. atrosepticum.

Discussion

The physiological understanding of quantitative resistance of

plants to pathogens is still incomplete. Here, we tested the

hypothesis that differential induction by pathogen-derived elicitors

of a general defense pathway among cultivars is sufficient to

explain quantitative host resistance. According to this hypothesis,

we expected the pathogen elicitors to induce more PAL activity in

the more resistant cultivars, thus leading to reduced disease

severity.

We established consistent statistical relations between the level

of defense reaction, assessed as elicitor-triggered PAL activity, and

quantitative resistance, assessed as the severity of disease in

controlled inoculation experiments. However, the type of relation

was different in each pathosystem (Figure 7). These relations

proved robust in our experimental conditions, as they held for

tubers produced in different years and stored for various durations.

While the higher level of defense in the cultivars more resistant

to P. atrosepticum is consistent with earlier evidence [14,15,16] and

with our working hypothesis, a higher level of defense was found in

the cultivars more susceptible to P. infestans. This was surprising

given earlier results suggesting phenolic metabolism of potato to be

implicated in resistance to P. infestans [4,11,12,13], and our own

data showing the deleterious effect of chlorogenic acid on

pathogen growth.

The data for P. infestans therefore do not support the idea that

the PAMP-triggered active defense is sufficient to explain

quantitative resistance – although it does in P. atrosepticum.

Accounting for the differences between the two pathosystems thus

requires a more complex interaction model, coupling physiological

response with key life history traits of the pathogen (Figure 8). The

physiological component of this model is closely related to the

PAMP-triggered immunity model [5], and assumes i) that

pathogen growth enhances elicitor production, ii) that elicitors

trigger defense reactions – in particular the synthesis molecules

with antimicrobial effect. This occurs in both pathosystems studied

here. Our model is thus based on one key life history trait,

pathogen growth, which drives both the development of disease

symptoms and induced defense reactions. However, pathogen

growth can also result in pathogen escape from host tissue where

defense is triggered. This has been shown for P. infestans [4,19],

which produces extending lesions by growing on living host tissue,

but to our knowledge not for P. atrosepticum, which macerates host

tissue and feeds from degraded cells. This major difference in

infectious processes could explain why our original hypothesis,

restricted to the physiological part of the model, was verified for P.

atrosepticum but not for P. infestans.

Several other results provide additional support for the potential

role of pathogen escape in resistance. Firstly, we demonstrated that

a physiologically relevant concentration of chlorogenic acid, the

major phenolic compound in potato [20], inhibits the growth of

both pathogens, P. atrosepticum and P. infestans, in-vitro. This implies

that chlorogenic acid would be effective against both pathogens if

there were no possible pathogen escape in planta. Secondly, Friend

et al. [21] showed that PAL activity was always induced to a

greater extent in infected potato tissue than either at the

colonization front or in proximal (still non-infected) tissue. This

suggests that the growing front of the pathogen occurs in tissue

where defense reaction is not yet activated, and that defense occurs

after the pathogen has grown further away.

It is interesting to notice that the importance of pathogen escape

in quantitative resistance (or susceptibility) to P. infestans does not

disprove the validity of the physiological component of the model

in this case, and hence its general validity. It only implies that the

induction of active defense according to the PAMP-triggered

immunity model cannot explain alone quantitative resistance in all

pathosystems, because it overlooks the existence of additional

loops liable to modulate pathogen (and symptom) development.

Further to the ‘escape’ mechanism, other idiosyncrasies of the

late blight pathosystem probably also contribute to the positive

relationship between PAL activity and disease symptoms. One of

Induced Defense and Quantitative Potato Resistance
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these is linked to the fact that CCF components are able to induce

necroses, i.e. symptoms of disease. Elicitor activity and tissue

necrosis are due to the same fraction of the culture filtrate [22,23],

and necrosis due to the filtrate are more pronounced in a cultivar

highly susceptible to P. infestans than in tubers from a cultivar

partially resistant [24]. Furthermore, Bariya et al. [25] found that

a culture filtrate of P. infestans elicited PAL activity in leaves of

susceptible and R-gene resistant potato cultivars. These findings

firmly suggest that molecules present in the culture filtrate - and

thus secreted by P. infestans during colonisation - contribute to the

development of disease symptoms as well as to the elicitation of

defense reactions, in particular PAL activity.

Figure 3. Phenylalanine ammonia-lyase activity in relation to disease symptoms by Pectobacterium atrosepticum (A) or Phytophthora
infestans (B). PAL activity was measured in extracts from tuber tissue treated with water (Control), a concentrated culture filtrate (CCF) from P.
infestans or purified lipopolysaccharides (LPS) from P. atrosepticum. Disease severity caused by P. atrosepticum and P. infestans was measured in
tubers from 5 potato cultivars (Ackersegen, BF15, Bintje, Kerpondy, Saturna). Experiments were performed on 3 tuber batches produced in 2008 and
2009. Tubers produced in 2008 were used after 8 months of storage (batch A), tubers produced in 2009 were used after 2 months (batch B) and after
10 months (batch C) of storage. White boxes represent by-cultivar means of phenylalanine ammonia-lyase activity in replicate samples for Control
and ‘LPS treatments, while black boxes represent by-cultivar means of phenylalanine ammonia-lyase activity in CCF treated samples. Results from two
experiments on batch C were grouped before calculating means. Lines were drawn using coefficients of linear models fitted to by-cultivar means
including results from pathogenicity tests of P. atrosepticum and P. infestans as co-variable, respectively.
doi:10.1371/journal.pone.0023331.g003

Induced Defense and Quantitative Potato Resistance
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Two more confusing factors come in play in the model

proposed here. First, the pathogen is known to produce much

less elicitors in planta than in axenic culture [26]. This can most

likely lead to a lesser defense activity in the plant, and thus favor

pathogen growth. Second, the pathogen may not be sensitive to

the secondary metabolites derived from the phenylpropanoid

pathways. Our data however show that this is probably not the

case in P. infestans, which growth is inhibited in vitro by chlorogenic

acid.

Interestingly, PAL activity was not triggered by LPS alone,

although it has been shown to be increased during the interaction

with living P. atrosepticum cells [27]. Three hypotheses can account

for this result: i) LPS is not recognised by the plant cell; ii) LPS is

recognised but the signal is not transduced to activate PAL or iii)

the bacterium has developed mechanisms in order to minimize

recognition of LPS in order to avoid additional defense. The first

hypothesis is disproved by earlier reports that LPS triggers early

defense pathways (acidification of extracellular medium) in potato

cell cultures [28] and by recent experiments that have shown LPS

to bind to the extracellular cell wall (F. Val et al., unpublished

data). Therefore, it is most likely that recognition of LPS does not

lead to PAL induction, either because of a constitutive or induced

alteration of signal transduction. This is consistent with inhibition

of MAMP-induced signalling by extracellular polysaccharides

[29].

Our results highlight the complexity of the interplay between

quantitative resistance and defense. They strongly suggest that

quantitative resistance depends both from physiological responses

well described in the PAMP-triggered response model and to life

history traits of the pathogen, leading to pathogen escape from

host tissue where defense is active. We think that the integrative

approach, combining physiopathology and ecology, that is

underpinning the explanatory model proposed here, should prove

very useful for the understanding of quantitative resistance, and

open new ground for breeding strategies targeting both modes of

reducing disease symptoms.

Materials and Methods

Plant material
Tubers of five potato cultivars (Ackersegen, BF15, Bintje,

Kerpondy, Saturna) with reported differences in resistance levels

to P. atrosepticum and to P. infestans (Table 1) were obtained from the

INRA Potato Research Station in Ploudaniel (France).

Tubers from three separate batches differing in production year

and storage duration were used for experiments. Batch A

contained tubers produced in 2008 and stored at 2uC for 8

months. Batches B and C consisted of tubers produced in 2009

and stored at 2uC for 2 and 10 months, respectively. Therefore,

batches A and C are representative of tubers physiologically older

than batch B. The timing of experiments imposed to use another

batch of tubers of cultivar Bintje, produced in 2010 and stored for

8 months, for the pathogenicity tests on tuber slices in which

defense was induced ahead of inoculation.

Prior to use, all tubers were washed in tap water, surface-

disinfected by dipping in 70% ethanol, air-dried and subsequently

acclimated at ambient temperature for 24 h.

Inoculum
Inoculum of P. atrosepticum (CFPB 5889, INRA Angers, France)

was prepared as described by Desender et al. [28]. Bacterial

concentrations were adjusted with distilled water to

56108 cfu.ml21. Inoculum of P. infestans (Isolate 08-P15-12, INRA

Rennes, France) was obtained as described by Montarry et al. [30]

Figure 4. Phenylalanine ammonia-lyase activity and disease severity in potato tubers pre-treated with CCF. Tuber slices of cultivar
Bintje were surface-treated with 100 ml of a concentrated culture filtrate (CCF) of Phytophthora infestans at a concentration of 400 mg.ml21 or with
water as the control. Slices were incubated during 7.5 h at 20uC and subsequently assayed for Phenylalanine ammonia-lyase (PAL) activity (A) or
inoculated with pathogens. For Pectobacterium atrosepticum (B), weight of soft rot developed during 5 days at 20uC was measured. For P. infestans
(C), disease developed during 5 days at 17uC and is expressed as reflective density. PAL activity was determined in four aliquot samples prepared
form pooled tissue of 5 tuber slices and disease severity was determined in 10 tuber slices. Bars correspond to means 6 standard error of data from
two replicate experiments. Different letters above bars indicate significant differences between means of treatments (Tukey’s test, p,0.05).
doi:10.1371/journal.pone.0023331.g004

Induced Defense and Quantitative Potato Resistance
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and adjusted to a final concentration of 56104 sporangia.ml21

before liberation of zoospores.

Pathogenicity biotests
A relative ranking of tuber resistance to P. atrosepticum and P.

infestans was established by quantification of symptoms after

artificial inoculations in controlled conditions, as described by

Pasco et al. [10] and Niemira et al. [31]. For P. atrosepticum, five

tubers of each cultivar were halved longitudinally and 50 ml of

inoculum was pipetted in a small well cut with a cork borer into

the center of each half tuber. Two control tubers received 50 ml of

water instead of inoculum. After 5 days incubation at 20uC in a

dark and water-saturated ambience, rotted tissue was collected and

weighed. For P. infestans, five whole tubers of each cultivar were

sprayed with 1 ml of inoculum. A negative control was established

with five tubers sprayed with 1 ml of water. After incubation for 15

days at 17uC in a dark and water-saturated ambience, tubers were

sliced transversely and the reflective density was measured

individually on four sections using a desk scanner (Epson

Perfection 1260) calibrated to density with a reflective density

tablet (STOUFFER Graphic Art R2110C). Image analysis was

performed with the ImageJ software [32]. The reflective density of

cut surfaces from control tubers was subtracted from reflective

density of cut surfaces from corresponding tubers inoculated with

P. infestans. Negative values resulting from subtraction were

excluded from further analyses.

Elicitation
A concentrated culture filtrate from P. infestans and purified

lipopolysaccharides were obtained as described by Desender et al.

[28] and adjusted to a final concentration of 200 mg.ml21 for use

as elicitors. Slices (20 mm in diameter, 2 mm thick) were prepared

from parenchymatous tuber tissue. Slices were cut in half, washed

in distilled water, transferred to plastic trays containing moistened

filter paper, and kept at room temperature in the dark for 24 h

Figure 5. Relation between Phenylalanine ammonia-lyase
activity and total phenolic content. Phenylalanine ammonia-lyase
(PAL) activity and total phenolic content (expressed as gallic acid
equivalents) were measured in extracts from potato tuber tissue treated
with water (Control), a concentrated culture filtrate (CCF) from
Phytophthora infestans or purified lipopolysaccharides (LPS) from
Pectobacterium atrosepticum. By cultivar means of water and LPS
treated samples are represented as white symbols, CCF treated samples
as black symbols. Experiments were performed on 5 potato cultivars
(Ackersegen, BF15, Bintje, Kerpondy, Saturna) from tuber batches
produced in 2009 and used for experiments after 2 months of storage
(circles) and after 10 months of storage (boxes). Lines were drawn by
using coefficients of a linear model fitted to by-cultivar means for PAL
activity and total phenolic content.
doi:10.1371/journal.pone.0023331.g005

Figure 6. Effect of chlorogenic acid on pathogen growth.
Pathogen growth was determined in culture medium enriched with
chlorogenic acid to 0, 200 and 350 mg.ml21 . Concentrations of
Pectobacterium atrosepticum in liquid culture were determined after
40 h of contact (A). Radial mycelium growth of Phytophthora infestans
from mycelia disks on solid culture medium was measured after 7 days
(B). Bars represent the means 6 standard error of results from two
replicate experiments. Different letters above bars indicate significant
differences between treatments (Tukey’s test, p,0.05).
doi:10.1371/journal.pone.0023331.g006

Figure 7. Different defense-disease relations illustrated by a
‘see-saw but see-see’ model. For Pectobacterium atrosepticum (A),
the model describes the interaction according to the ‘see-saw principle’:
increased defense is associated with decreased disease. For Phy-
tophthora infestans (B), the model describes the interaction according to
the ‘see-see principle’: increased defense is associated with increased
disease. A plausible explanation for these differences is proposed by a
general interaction model (Figure 8).
doi:10.1371/journal.pone.0023331.g007
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before application of elicitors. Elicitor suspensions (25 ml) were

pipetted onto half-slices and spread on the whole surfaces; distilled

water was applied to control half slices.

PAL activity was tested in samples of four half-slices per

treatment (cultivar x elicitor combination) taken after 7.5 h of

contact and ground to a fine powder in liquid nitrogen. The

aliquot parts of 300 mg were prepared and stored at 220uC until

biochemical analyses were performed.

PAL activity determination
Proteins from 300 mg aliquots were extracted in 1 ml of 25 mM

sodium borate buffer at pH 8.8, supplemented with 10 mg.ml21

polyvinylpyrrolidone and 0.3% (v/v) b-mercaptoethanol. After

15 min of incubation on ice, samples were mixed up in a Retsch

Mixer Mill 301, and incubated for further 30 min on ice. Samples

were centrifuged for 30 min at 12,000 g. The modified method of

Bradford [33] was applied to quantify the proteins in supernatants,

using the Bio-Rad Protein Assay Dye Reagent Concentrate (Bio-

Rad Cat.-No.: 500-0006). The Bio-Rad standard assay procedure

was adopted in order to make up sample volumes of 1 ml.

PAL activity was quantified using a modified method of Zucker

[34]. The reaction mixture consisted of 100 mg of protein from

samples and 0.017 mmol of phenylalanine, diluted in 1 ml of

25 mM sodium borate buffer at pH 8.8. It was incubated at 40uC

for 1 h and absorbance at l=290 nm was read against a control

without phenylalanine. A molar absorption coefficient of e=10

000 L.mol21.cm21 was used to calculate PAL activity, expressed

as pmol of t-cinnamic acid produced per min and mg fresh weight

(FW). The quantification of PAL activity was performed on two or

three aliquots per cultivar x elicitor combination.

Pathogenicity test in tuber tissue with induced PAL
activity
Potato tubers (cultivar Bintje) were cut transversely to obtain

2 mm and 10 mm thick slices. Slices were transferred to plastic

trays containing moistened filter paper, and stored for 24 h at

room temperature in the dark. A volume of 100 ml of CCF at

400 mg.ml21 was subsequently pipetted onto each slice and spread

on the whole surfaces; distilled water was applied to control slices.

After 7.5 h at room temperature in the dark, the 2 mm-thick slices

were sampled and PAL activity was determined as described

above. P. atrosepticum and P. infestans were inoculated on the

10 mm-thick tuber slices and were placed at 20uC and 17uC,

respectively. Disease severity was assessed after 5 days of

incubation, as described above, except that for P. infestans, where

the upper surface of the slice was scanned after having removed a

1 mm thick slice.

Determination of total phenolics contents
Total phenolics were extracted from 300 mg of grinded potato

tuber tissue in 1 ml of methanol containing 1% (v/v) acetic acid.

The reaction mixture was incubated at 80uC minutes for three

successive steps of 5 min, separated by grinding in a Retsch Mixer

Mill 301. The supernatant containing soluble phenolics was

separated from debris by centrifugation at 5,000 g during 10

minutes. The extraction process was repeated and supernatants

were merged. Total phenolic compounds were quantified using the

method initially proposed by Folin and Ciocalteu [35] with several

modifications. The reaction mixture was prepared by successively

adding to a haemolysis tube containing 2 ml of distilled water

0.5 ml of each of the following components: phenolic supernatants,

Folin-Ciocalteu’s Phenol Reagent 2 N (Sigma-Aldrich, F9252),

aqueous solution of sodium carbonate (c= 200 mg.ml21) and

distilled water. It was incubated at ambient temperature for 90

minutes and absorbance was determined spectrophotometrically at

l=760 nm. The total content of soluble phenolics was calculated

by comparison with a standard curve of gallic acid, and is expressed

as mg of gallic acid equivalents per g FW.

Antimicrobial test of chlorogenic acid
Chlorogenic acid was added to culture media (King B or pea

agar), to reach final concentrations of 200 and 350 mg.ml21.

Culture medium without chlorogenic acid served as the control.

For P. atrosepticum, amended liquid King B medium containing

66108 bact.ml21 was placed on a rotary shaker at 300 rpm. After

0, 20 and 40 h at room temperature, bacterial density was assessed

spectrophotometrically as described by Desender et al. [28]. For P.

infestans, melted pea medium containing 1.5% of agar was chilled

down to 40uC, enriched with adequate amounts of chlorogenic

acid and transferred to Petri dishes. Mycelial disks were placed in

the centre of each Petri dish and incubated at 17uC. After 7 days,

radial growth of mycelium was measured in orthogonal directions.

Measurements were repeated on 5 Petri dishes for each

experimental condition.

Figure 8. A general interaction model coupling physiological response with key life history traits of the pathogen. The model revolves
around a key life history trait, pathogen growth, which drives both physiological (light shaded boxes and bold solid lines) and demographic
responses (white boxes and dotted lines). The physiological part of the model derives from the PAMP-triggered response model [5]. It is assumed to
occur in all pathosystems; however, defense reactions can also lead to enhance necrosis, and hence to enhanced symptoms of disease – as is the case
in Phytophthora infestans (dotted lines). Pathogen growth varies between pathosystems, according to host exploitation strategies. In all cases,
enhanced pathogen growth leads to more disease; however, in biotrophic pathogens like P. infestans, which reproduce on living tissue, growth can
lead the pathogen to escape tissue before effective defense reactions take place. This model explains why although the PAMP-triggered response
model probably works in all cases, opposite relationships can be observed when plotting the intensity of defense reactions against host resistance
(i.e. disease symptoms).
doi:10.1371/journal.pone.0023331.g008
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Data analysis
All statistical analyses were performed with the statistical

software R GUI version 2.10.1 by the R Development Core

Team [36]. Null hypotheses were rejected if p,0.05. Data were

transformed to natural logarithms or square roots when necessary

before performing the analysis of variance and multiple compar-

isons of means with the Tukey and Dunnett tests. For analysis of

co-variance, by-cultivar means were calculated from pathogenicity

and biochemical data (enzyme activity or phenolic contents) for

each tuber batch. On batches A and B, these are means of disease

severity from different tubers or from repeated analysis of PAL or

total phenolic content. On batch C, results from two replicate

experiments were grouped together before calculating means.

Non-significant interactions or factors were removed by backward

model simplification, and factor levels not significantly different

were grouped together.
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