M. Wayne, Y. Pan, S. Nuzhdin, and L. Mcintyre, Additivity and trans-acting Effects on Gene Expression in Male Drosophila simulans, Genetics, vol.168, issue.3, pp.1413-1420, 2004.
DOI : 10.1534/genetics.104.030973

A. Ghazalpour, X. Wang, A. Lusis, and M. Mehrabian, Complex Inheritance of the 5-Lipoxygenase Locus Influencing Atherosclerosis in Mice, Genetics, vol.173, issue.2, pp.943-951, 2006.
DOI : 10.1534/genetics.106.057455

E. Schadt, J. Lamb, X. Yang, J. Zhu, S. Edwards et al., An integrative genomics approach to infer causal associations between gene expression and disease, Nature Genetics, vol.69, issue.7, pp.37710-717, 2005.
DOI : 10.1023/A:1018394410659

E. Schadt, S. Monks, T. Drake, A. Lusis, C. N. Colinayo et al., Genetics of gene expression surveyed in maize, mouse and man, Nature, vol.422, issue.6929, pp.422297-302, 2003.
DOI : 10.1038/nature01434

N. Hubner, C. Wallace, H. Zimdahl, E. Petretto, H. Schulz et al., Integrated transcriptional profiling and linkage analysis for identification of genes underlying disease, Nature Genetics, vol.99, issue.3, pp.243-253, 2005.
DOI : 10.1007/s003359900031

V. Mootha, P. Lepage, K. Miller, J. Bunkenborg, M. Reich et al., Identification of a gene causing human cytochrome c oxidase deficiency by integrative genomics, Proceedings of the National Academy of Sciences, vol.100, issue.2, pp.605-610, 2003.
DOI : 10.1073/pnas.242716699

M. Kirst, A. Myburg, D. Leon, J. Kirst, M. Scott et al., Coordinated Genetic Regulation of Growth and Lignin Revealed by Quantitative Trait Locus Analysis of cDNA Microarray Data in an Interspecific Backcross of Eucalyptus, PLANT PHYSIOLOGY, vol.135, issue.4, pp.2368-2378, 2004.
DOI : 10.1104/pp.103.037960

R. Decook, S. Lall, D. Nettleton, and S. Howell, Genetic Regulation of Gene Expression During Shoot Development in Arabidopsis, Genetics, vol.172, issue.2, pp.1155-1164, 2006.
DOI : 10.1534/genetics.105.042275

S. Ponsuksili, J. E. Murani, E. Phatsara, C. Srikanchai, T. Walz et al., Trait correlated expression combined with expression QTL analysis reveals biological pathways and candidate genes affecting water holding capacity of muscle, BMC Genomics, vol.9, issue.1, p.367, 2008.
DOI : 10.1186/1471-2164-9-367

M. Wayne and L. Mcintyre, Combining mapping and arraying: An approach to candidate gene identification, Proceedings of the National Academy of Sciences, vol.99, issue.23, pp.14903-14906, 2002.
DOI : 10.1073/pnas.222549199

Y. Blum, L. Mignon, G. Lagarrigue, S. Causeur, and D. , A factor model to analyze heterogeneity in gene expression, BMC Bioinformatics, vol.11, issue.1, p.368, 2010.
DOI : 10.1186/1471-2105-11-368

URL : https://hal.archives-ouvertes.fr/hal-00729426

L. Mignon, G. Desert, C. Pitel, F. Leroux, S. Demeure et al., Using transcriptome profiling to characterize QTL regions on chicken chromosome 5, BMC Genomics, vol.10, issue.1, p.575, 2009.
DOI : 10.1186/1471-2164-10-575

URL : https://hal.archives-ouvertes.fr/hal-00730106

C. Friguet and . Cd, A Factor Model Approach to Multiple Testing Under Dependence, Journal of the American Statistical Association, vol.104, issue.488, pp.1406-1415, 2009.
DOI : 10.1198/jasa.2009.tm08332

URL : https://hal.archives-ouvertes.fr/hal-00458049

R. Kustra, R. Shioda, and M. Zhu, A factor analysis model for functional genomics, BMC Bioinformatics, vol.7, issue.1, p.216, 2006.
DOI : 10.1186/1471-2105-7-216

J. Leek and J. Storey, A general framework for multiple testing dependence, Proceedings of the National Academy of Sciences, vol.105, issue.48, pp.18718-18723, 2008.
DOI : 10.1073/pnas.0808709105

J. Leek and J. Storey, Capturing heterogeneity in gene expression studies by surrogate variable analysis, PLoS Genet, vol.3, issue.9, pp.1724-1735, 2007.

J. Elsen, . Mb, B. Goffinet, D. Boichard, L. Roy et al., Alternatives models for QTL detection in livestock.I.General introduction. Genetic Selection Evolution, pp.213-224, 1999.

O. Filangi, . Mc, H. Gilbert, A. Legara, L. Roy et al., QTLMap software in outbred populations, 9th World Congress of genetics applied to livestock production, p.787, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01193540

M. Groenen, H. Cheng, N. Bumstead, B. Benkel, W. Briles et al., A consensus linkage map of the chicken genome, Genome Res, vol.10, issue.1, pp.137-147, 2000.

T. Barrett, D. Troup, S. Wilhite, P. Ledoux, D. Rudnev et al., NCBI GEO: mining tens of millions of expression profiles--database and tools update, Nucleic Acids Research, vol.35, issue.Database, pp.35-760, 2007.
DOI : 10.1093/nar/gkl887

Y. Benjamini, Controlling the false discovery rate: a practical and powerful approach to multiple testing, Journal of the Royal Statistical Society, vol.57, pp.289-300, 1995.

D. Causeur, . Fc, M. Houée-bigot, and M. Kloareg, Package for Large-Scale Significance Testing under Dependence, Journal of Statistical Software, vol.40, issue.14, pp.401-420, 2011.
DOI : 10.18637/jss.v040.i14

URL : https://hal.archives-ouvertes.fr/hal-00730155

J. Elsen, B. Mangin, B. Goffinet, D. Boichard, L. Roy et al., Alternatives models for QTL detection in livestock.I.General introduction. Genetic Selection Evolution, pp.213-224, 1999.

L. Roy, P. Elsen, J. Boichard, D. Mangin, M. Bidanel et al., An algorithm for QTL detection in mixture of full and half sib families, 6th World Congress of Genetic Applied to Livestock Production, pp.257-260, 1998.

E. Lander and D. Botstein, Mapping mendelian factors underlying quantitative traits using RFLP linkage maps, Genetics, vol.121, issue.1, pp.185-199, 1989.

. Blum, Complex trait subtypes identification using transcriptome profiling reveals an interaction between two QTL affecting adiposity in chicken, BMC Genomics, vol.121, issue.1, p.567, 2011.
DOI : 10.1186/1297-9686-31-3-213

URL : https://hal.archives-ouvertes.fr/hal-00730144