T. Aki, Y. Shimada, and K. Inagaki, Molecular Cloning and Functional Characterization of Rat ??-6 Fatty Acid Desaturase, Biochemical and Biophysical Research Communications, vol.255, issue.3, pp.575-579, 1999.
DOI : 10.1006/bbrc.1999.0235

R. Albarran-zeckler, Y. Sun, and R. Smith, Physiological roles revealed by ghrelin and ghrelin receptor deficient mice, Peptides, vol.32, issue.11, pp.2229-2235, 2011.
DOI : 10.1016/j.peptides.2011.07.003

L. Alonso, J. Fontecha, L. Lozada, M. Fraga, and M. Juárez, Fatty Acid Composition of Caprine Milk: Major, Branched-Chain, and Trans Fatty Acids, Journal of Dairy Science, vol.82, issue.5, pp.878-884, 1999.
DOI : 10.3168/jds.S0022-0302(99)75306-3

J. Ashitani, N. Matsumoto, and M. Nakazato, Effect of octanoic acid-rich formula on plasma ghrelin levels in cachectic patients with chronic respiratory disease, Nutrition Journal, vol.175, issue.1, p.25, 2009.
DOI : 10.1164/rccm.200701-067OC

E. Beauchamp, D. Goenaga, L. Bloc-'h, J. Catheline, D. Legrand et al., Myristic acid increases the activity of dihydroceramide ??4-desaturase 1 through its N-terminal myristoylation, Biochimie, vol.89, issue.12, pp.1553-1561, 2007.
DOI : 10.1016/j.biochi.2007.07.001

E. Beauchamp, V. Rioux, and P. Legrand, Acide myristique??: nouvelles fonctions de r??gulation et de signalisation, m??decine/sciences, vol.25, issue.1, pp.57-63, 2009.
DOI : 10.1051/medsci/200925157

E. Beauchamp, X. Tekpli, G. Marteil, D. Lagadic-gossmann, P. Legrand et al., N-Myristoylation targets dihydroceramide ??4-desaturase 1 to mitochondria: Partial involvement in the apoptotic effect of myristic acid, Biochimie, vol.91, issue.11-12, pp.1411-1419, 2009.
DOI : 10.1016/j.biochi.2009.07.014

URL : https://hal.archives-ouvertes.fr/hal-00730029

A. Bielawska, H. Crane, D. Liotta, L. Obeid, and Y. Hannun, Selectivity of ceramide-mediated biology. Lack of activity of erythro-dihydroceramide, J. Biol. Chem, vol.268, pp.26226-26232, 1993.

S. Blaskovic, A. Adibekian, M. Blanc, and G. Van-der-goot, Mechanistic effects of protein palmitoylation and the cellular consequences thereof, Chemistry and Physics of Lipids, vol.180, pp.44-52, 2014.
DOI : 10.1016/j.chemphyslip.2014.02.001

N. Borgese, D. Aggujaro, P. Carrera, G. Pietrini, and M. Bassetti, A role for N-myristoylation in protein targeting: NADH-cytochrome b5 reductase requires myristic acid for association with outer mitochondrial but not ER membranes, The Journal of Cell Biology, vol.135, issue.6, pp.1501-1513, 1996.
DOI : 10.1083/jcb.135.6.1501

C. Chen and D. Manning, Regulation of G proteins by covalent modification, Oncogene, vol.20, issue.13, pp.1643-1652, 2001.
DOI : 10.1038/sj.onc.1204185

W. Chen and P. Enriori, Ghrelin: a journey from GH secretagogue to regulator of metabolism, Transl. Gastrointest. Cancer, vol.4, pp.14-27, 2014.

H. Cho, M. Nakamura, and S. Clarke, Cloning, Expression, and Nutritional Regulation of the Mammalian ??-6 Desaturase, Journal of Biological Chemistry, vol.274, issue.1, pp.471-477, 1999.
DOI : 10.1074/jbc.274.1.471

S. Clark, B. Brause, and P. Holt, Lipolysis and absorption of fat in the rat stomach, Gastroenterology, vol.56, pp.214-222, 1969.

S. Colombo, R. Longhi, and S. Alcaro, N-myristoylation determines dual targeting of mammalian NADH-cytochrome b(5) reductase to ER and mitochondrial outer membranes by a mechanism of kinetic partitioning, The Journal of Cell Biology, vol.268, issue.5, pp.735-745, 2005.
DOI : 10.1002/pro.5560021003

D. Andrea, S. Guillou, H. Jan, and S. , The same rat ??6-desaturase not only acts on 18- but also on 24-carbon fatty acids in very-long-chain polyunsaturated fatty acid biosynthesis, Biochemical Journal, vol.364, issue.1, pp.49-55, 2002.
DOI : 10.1042/bj3640049

J. Darling, F. Zhao, R. Loftus, L. Patton, R. Gibbs et al., -Acyltransferase Reveals Chemical Determinants of Ghrelin Selectivity and Acyl Group Recognition, Biochemistry, vol.54, issue.4, pp.1100-1110, 2015.
DOI : 10.1021/bi5010359

URL : https://hal.archives-ouvertes.fr/in2p3-00011871

P. Delhanty, S. Neggers, and . Aj-van-der-lely, Des-Acyl Ghrelin: A Metabolically Active Peptide, Endocr. Dev, vol.25, pp.112-121, 2013.
DOI : 10.1159/000346059

C. Delporte, Structure and Physiological Actions of Ghrelin, Scientifica, vol.26, issue.8, supplement, p.518909, 2013.
DOI : 10.1016/j.bone.2007.05.006

C. Ducker, J. Upson, K. French, and C. Smith, Two N-Myristoyltransferase Isozymes Play Unique Roles in Protein Myristoylation, Proliferation, and Apoptosis, Molecular Cancer Research, vol.3, issue.8, pp.463-476, 2005.
DOI : 10.1158/1541-7786.MCR-05-0037

R. Duronio, D. Rudnick, R. Johnson, D. Johnson, and J. Gordon, Myristic acid auxotrophy caused by mutation of S. cerevisiae myristoyl- CoA:protein N-myristoyltransferase, The Journal of Cell Biology, vol.113, issue.6, pp.1313-1330, 1991.
DOI : 10.1083/jcb.113.6.1313

R. Duronio, S. Reed, and J. Gordon, Mutations of human myristoyl-CoA:protein N-myristoyltransferase cause temperature-sensitive myristic acid auxotrophy in Saccharomyces cerevisiae., Proc. Natl. Acad. Sci. USA, pp.4129-4133, 1992.
DOI : 10.1073/pnas.89.9.4129

H. Ezanno, J. Le-bloc-'h, E. Beauchamp, D. Lagadic-gossmann, P. Legrand et al., Myristic Acid Increases Dihydroceramide ??4-Desaturase 1 (DES1) Activity in Cultured Rat Hepatocytes, Myristic acid increases dihydroceramide Delta4-desaturase 1 (DES1) activity in cultured rat hepatocytes, pp.117-128, 2012.
DOI : 10.1007/s11745-011-3638-x

H. Ezanno, E. Beauchamp, F. Lemarié, P. Legrand, and V. Rioux, L???acylation des prot??ines??: une fonction cellulaire importante des acides gras satur??s, Nutrition Clinique et M??tabolisme, vol.27, issue.1, pp.10-19, 2013.
DOI : 10.1016/j.nupar.2012.11.001

N. Faergeman and J. Knudsen, Role of long-chain fatty acyl-CoA esters in the regulation of metabolism and in cell signalling, Biochemical Journal, vol.323, issue.1, pp.1-12, 1997.
DOI : 10.1042/bj3230001

G. Fernando-warnakulasuriya, J. Staggers, S. Frost, and M. Wells, Studies on fat digestion, absorption, and transport in the suckling rat. I. Fatty acid composition and concentrations of major lipid components, J. Lipid Res, vol.22, pp.668-674, 1981.

R. Fukumori, T. Sugino, and H. Shingu, Ingestion of medium chain fatty acids by lactating dairy cows increases concentrations of plasma ghrelin, Domestic Animal Endocrinology, vol.45, issue.4, pp.216-223, 2013.
DOI : 10.1016/j.domaniend.2013.09.005

C. Garcia-ruiz, A. Colell, M. Mari, A. Morales, and J. Fernandez-checa, Direct effect of ceramide on the mitochondrial electron transport chain leads to generation of reactive oxygen species. Role of mitochondrial glutathione, J. Biol. Chem, vol.272, pp.11369-11377, 1997.

D. Giang and B. Cravatt, A Second Mammalian N-Myristoyltransferase, Journal of Biological Chemistry, vol.273, issue.12, pp.6595-6598, 1998.
DOI : 10.1074/jbc.273.12.6595

M. Goebel-stengel, T. Hofmann, and U. Elbelt, The ghrelin activating enzyme ghrelin-O-acyltransferase (GOAT) is present in human plasma and expressed dependent on body mass index, Peptides, vol.43, pp.13-19, 2013.
DOI : 10.1016/j.peptides.2013.02.011

Z. Gong, M. Yoshimura, and S. Aizawa, G protein-coupled receptor 120 signaling regulates ghrelin secretion in vivo and in vitro, AJP: Endocrinology and Metabolism, vol.306, issue.1, pp.28-35, 2014.
DOI : 10.1152/ajpendo.00306.2013

J. Greaves and L. Chamberlain, DHHC palmitoyl transferases: substrate interactions and (patho)physiology, Trends in Biochemical Sciences, vol.36, issue.5, pp.245-253, 2011.
DOI : 10.1016/j.tibs.2011.01.003

T. Gudz, K. Tserng, and C. Hoppel, Direct Inhibition of Mitochondrial Respiratory Chain Complex III by Cell-permeable Ceramide, Journal of Biological Chemistry, vol.272, issue.39, pp.24154-24158, 1997.
DOI : 10.1074/jbc.272.39.24154

H. Guillou, D. Andrea, S. Rioux, and V. , Distinct roles of endoplasmic reticulum cytochrome b5 and fused cytochrome b5-like domain for rat ??6-desaturase activity, The Journal of Lipid Research, vol.45, issue.1, pp.32-40, 2004.
DOI : 10.1194/jlr.M300339-JLR200

J. Gutierrez, P. Solenberg, and D. Perkins, Ghrelin octanoylation mediated by an orphan lipid transferase, Proc. Natl. Acad, 2008.
DOI : 10.1073/pnas.0800708105

A. Howard, S. Feighner, and D. Cully, A Receptor in Pituitary and Hypothalamus That Functions in Growth Hormone Release, Science, vol.273, issue.5277, pp.974-977, 1996.
DOI : 10.1126/science.273.5277.974

S. Jan, H. Guillou, D. Andrea, S. Daval, S. Bouriel et al., Myristic acid increases ??6-desaturase activity in cultured rat hepatocytes, Reproduction Nutrition Development, vol.44, issue.2, pp.131-140, 2004.
DOI : 10.1051/rnd:2004020

URL : https://hal.archives-ouvertes.fr/hal-00900482

S. Janssen, J. Laermans, H. Iwakura, J. Tack, and I. Depoortere, Sensing of Fatty Acids for Octanoylation of Ghrelin Involves a Gustatory G-Protein, PLoS ONE, vol.414, issue.6, p.40168, 2012.
DOI : 10.1371/journal.pone.0040168.g007

R. Jensen, The lipids in human milk, Progress in Lipid Research, vol.35, issue.1, pp.53-92, 1996.
DOI : 10.1016/0163-7827(95)00010-0

R. Jensen, A. Ferris, C. Lammi-keefe, and R. Henderson, Lipids of Bovine and Human Milks: A Comparison, Journal of Dairy Science, vol.73, issue.2, pp.223-240, 1990.
DOI : 10.3168/jds.S0022-0302(90)78666-3

D. Johnson, R. Bhatnagar, L. Knoll, and J. Gordon, Genetic and Biochemical Studies of Protein N-Myristoylation, Annual Review of Biochemistry, vol.63, issue.1, pp.869-914, 1994.
DOI : 10.1146/annurev.bi.63.070194.004253

D. Johnson, L. Knoll, D. Levin, and J. Gordon, Saccharomyces cerevisiae contains four fatty acid activation (FAA) genes: an assessment of their role in regulating protein N- myristoylation and cellular lipid metabolism, The Journal of Cell Biology, vol.127, issue.3, pp.751-62, 1994.
DOI : 10.1083/jcb.127.3.751

J. Kamegai, H. Tamura, T. Shimizu, S. Ishii, H. Sugihara et al., Chronic Central Infusion of Ghrelin Increases Hypothalamic Neuropeptide Y and Agouti-Related Protein mRNA Levels and Body Weight in Rats, Diabetes, vol.50, issue.11, pp.2438-2443, 2001.
DOI : 10.2337/diabetes.50.11.2438

M. Katan, P. Zock, and R. Mensink, Effects of fats and fatty acids on blood lipids in humans: an overview. Am, J. Clin. Nutr, vol.60, pp.1017-1022, 1994.

M. Kojima, H. Hosoda, Y. Date, M. Nakazato, H. Matsuo et al., Ghrelin is a growth-hormone-releasing acylated peptide from stomach, Nature, vol.402, issue.6762, pp.656-660, 1999.
DOI : 10.1038/45230

H. Lai and D. Ney, Gastric digestion modifies absorption of butterfat into lymph chylomicrons in rats, J. Nutr, vol.128, pp.2403-2410, 1998.

P. Legrand, Nouvelle approche pour les recommandations nutritionnelles en lipides, Ol??agineux, Corps gras, Lipides, vol.20, issue.2, pp.75-78, 2013.
DOI : 10.1051/ocl.2013.0502

P. Legrand and V. Rioux, Specific roles of saturated fatty acids: Beyond epidemiological data, European Journal of Lipid Science and Technology, vol.102, issue.10, pp.1489-1499, 2015.
DOI : 10.1002/ejlt.201400514

URL : https://hal.archives-ouvertes.fr/hal-01409007

P. Legrand, E. Beauchamp, D. Catheline, F. Pedrono, and V. Rioux, Short Chain Saturated Fatty Acids Decrease Circulating Cholesterol and Increase Tissue PUFA Content in the Rat, Lipids, vol.60, issue.11, pp.975-86, 2010.
DOI : 10.1007/s11745-010-3481-5

URL : https://hal.archives-ouvertes.fr/hal-00729618

F. Lemarié, E. Beauchamp, S. Dayot, C. Duby, P. Legrand et al., Dietary Caprylic Acid (C8:0) Does Not Increase Plasma Acylated Ghrelin but Decreases Plasma Unacylated Ghrelin in the Rat, PLOS ONE, vol.93, issue.Suppl 1, p.133600, 2015.
DOI : 10.1371/journal.pone.0133600.s008

F. Lemarié, E. Beauchamp, P. Legrand, and V. Rioux, Revisiting the metabolism and physiological functions of caprylic acid (C8:0) with special focus on ghrelin octanoylation, Biochimie, vol.120, 2015.
DOI : 10.1016/j.biochi.2015.08.002

C. Lim, B. Kola, A. Grossman, and M. Korbonits, The expression of ghrelin O-acyltransferase (GOAT) in human tissues, Endocrine Journal, vol.58, issue.8, 2011.
DOI : 10.1507/endocrj.K11E-117

D. Martin, E. Beauchamp, and L. Berthiaume, Post-translational myristoylation: Fat matters in cellular life and death, Biochimie, vol.93, issue.1, pp.18-31, 2011.
DOI : 10.1016/j.biochi.2010.10.018

S. Maurer-stroh, M. Gouda, and M. Novatchkova, MYRbase: analysis of genome-wide glycine myristoylation enlarges the functional spectrum of eukaryotic myristoylated proteins, 2004.

D. Mitchell, A. Vasudevan, M. Linder, and R. Deschenes, Protein palmitoylation by a family of DHHC protein S-acyltransferases, The Journal of Lipid Research, vol.47, issue.6, 2006.
DOI : 10.1194/jlr.R600007-JLR200

Y. Mizutani, A. Kihara, and Y. Igarashi, Identification of the human sphingolipid C4-hydroxylase, hDES2, and its up-regulation during keratinocyte differentiation, FEBS Letters, vol.22, issue.1-3, pp.93-97, 2004.
DOI : 10.1016/S0014-5793(04)00274-1

Y. Nishi, H. Hiejima, and H. Hosoda, Ingested Medium-Chain Fatty Acids Are Directly Utilized for the Acyl Modification of Ghrelin, Endocrinology, vol.146, issue.5, pp.2255-2264, 2005.
DOI : 10.1210/en.2004-0695

Y. Nishi, H. Hiejima, H. Mifune, T. Sato, K. Kangawa et al., Developmental Changes in the Pattern of Ghrelin???s Acyl Modification and the Levels of Acyl-Modified Ghrelins in Murine Stomach, Endocrinology, vol.146, issue.6, pp.2709-2715, 2005.
DOI : 10.1210/en.2004-0645

Y. Nishi, H. Mifune, and A. Yabuki, Changes in subcellular distribution of n-octanoyl or n-decanoyl ghrelin in ghrelinproducing cells, Front. Endocrinol, vol.4, p.84, 2013.

F. Omae, M. Miyazaki, A. Enomoto, M. Suzuki, Y. Suzuki et al., DES2 protein is responsible for phytoceramide biosynthesis in the mouse small intestine, Biochemical Journal, vol.379, issue.3, pp.687-695, 2004.
DOI : 10.1042/bj20031425

J. Ozols, S. Carr, and P. Strittmatter, Identification of the NH2- terminal blocking group of NADH-cytochrome b5 reductase as myristic acid and the complete amino acid sequence of the membrane-binding domain, J. Biol. Chem, vol.259, pp.13349-13354, 1984.

J. Perret, Gastric lipolysis of maternal milk triglycerides, gastric absorption of medium chain fatty acids in the young rabbit (author's transl), J. Physiol. (Paris), vol.76, pp.159-166, 1980.

V. Rioux and P. Legrand, M??tabolisme et fonctions de l???acide myristique, Ol??agineux, Corps gras, Lipides, vol.8, issue.2, pp.161-166, 2001.
DOI : 10.1051/ocl.2001.0161

V. Rioux, A. Galat, G. Jan, F. Vinci, D. Andrea et al., Exogenous myristic acid acylates proteins in cultured rat hepatocytes, The Journal of Nutritional Biochemistry, vol.13, issue.2, pp.66-74, 2002.
DOI : 10.1016/S0955-2863(01)00196-6

V. Rioux, S. Daval, H. Guillou, J. S. Legrand, and P. , Although it is rapidly metabolized in cultured rat hepatocytes, lauric acid is used for protein acylation, Reproduction Nutrition Development, vol.43, issue.5, pp.419-430, 2003.
DOI : 10.1051/rnd:2003036

URL : https://hal.archives-ouvertes.fr/hal-00900517

V. Rioux, D. Catheline, M. Bouriel, and P. Legrand, Dietary myristic acid at physiologically relevant levels increases the tissue content of C20:5 n-3 and C20:3 n-6 in the rat, Reproduction Nutrition Development, vol.45, issue.5, pp.599-612, 2005.
DOI : 10.1051/rnd:2005048

URL : https://hal.archives-ouvertes.fr/hal-00900585

V. Rioux, E. Beauchamp, F. Pedrono, S. Daval, D. Molle et al., Identification and characterization of recombinant and native rat myristoyl-CoA: protein N-myristoyltransferases, Molecular and Cellular Biochemistry, vol.10, issue.R21, pp.161-170, 2006.
DOI : 10.1007/s11010-005-9108-0

V. Rioux, D. Catheline, and P. Legrand, In rat hepatocytes, myristic acid occurs through lipogenesis, palmitic acid shortening and lauric acid elongation, animal, vol.6, issue.06, pp.820-826, 2007.
DOI : 10.1083/jcb.113.6.1313

V. Rioux, D. Catheline, E. Beauchamp, L. Bloc-'h, J. Pédrono et al., Substitution of dietary oleic acid for myristic acid increases the tissue storage of ??-linolenic acid and the concentration of docosahexaenoic acid in the brain, red blood cells and plasma in the rat, animal, vol.78, issue.04, pp.636-644, 2008.
DOI : 10.1051/rnd:2004020

URL : https://hal.archives-ouvertes.fr/hal-00729914

V. Rioux, F. Pedrono, and P. Legrand, Regulation of mammalian desaturases by myristic acid: N-terminal myristoylation and other modulations, Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, vol.1811, issue.1, pp.1-8, 2011.
DOI : 10.1016/j.bbalip.2010.09.005

URL : https://hal.archives-ouvertes.fr/hal-00730171

D. Rundle, R. Rajala, and R. Anderson, Characterization of Type I and Type II Myristoyl-CoA:protein N -Myristoyltransferases with the Acyl-CoAs found on Heterogeneously Acylated Retinal Proteins, Experimental Eye Research, vol.75, issue.1, pp.87-97, 2002.
DOI : 10.1006/exer.2002.1189

P. Selvakumar, E. Smith-windsor, K. Bonham, and R. Sharma, -Myristoyltransferase 2 expression in human colon cancer: Cross-talk between the calpain and caspase system, FEBS Letters, vol.356, issue.8, pp.2021-2026, 2006.
DOI : 10.1016/j.febslet.2006.02.076

URL : https://hal.archives-ouvertes.fr/hal-00145802

N. Singh, S. Wakil, and J. Stoops, On the question of half-or fullsite reactivity of animal fatty acid synthetase, J. Biol. Chem, vol.259, pp.3605-3611, 1984.

L. Siskind, R. Kolesnick, and M. Colombini, Ceramide Channels Increase the Permeability of the Mitochondrial Outer Membrane to Small Proteins, Journal of Biological Chemistry, vol.277, issue.30, pp.26796-26803, 2002.
DOI : 10.1074/jbc.M200754200

J. Staggers, G. Fernando-warnakulasuriya, and M. Wells, Studies on fat digestion, absorption, and transport in the suckling rat. II. Triacylglycerols: molecular species, stereospecific analysis, and specificity of hydrolysis by lingual lipase, J. Lipid Res, vol.22, pp.675-679, 1981.

P. Strittmatter, J. Kittler, J. Coghill, and J. Ozols, Interaction of non-myristoylated NADH-cytochrome b5 reductase with cytochrome b5-dimyristoylphosphatidylcholine vesicles, J. Biol. Chem, vol.268, pp.23168-23171, 1993.

K. Takagi, R. Legrand, and A. Asakawa, Anti-ghrelin immunoglobulins modulate ghrelin stability and its orexigenic effect in obese mice and humans, Nature Communications, vol.789, 2013.
DOI : 10.1038/35038090

M. Taylor, Y. Hwang, P. Hsiao, J. Boeke, and P. Cole, Ghrelin O-Acyltransferase Assays and Inhibition, Methods Enzymol, vol.514, pp.205-228, 2012.
DOI : 10.1016/B978-0-12-381272-8.00013-1

M. Taylor, T. Ruch, and P. Hsiao, Architectural Organization of the Metabolic Regulatory Enzyme Ghrelin O-Acyltransferase, Journal of Biological Chemistry, vol.288, issue.45, pp.32211-32228, 2013.
DOI : 10.1074/jbc.M113.510313

P. Ternes, S. Franke, U. Zahringer, P. Sperling, and E. Heinz, Identification and Characterization of a Sphingolipid Delta 4-Desaturase Family, Journal of Biological Chemistry, vol.277, issue.28, pp.25512-25518, 2002.
DOI : 10.1074/jbc.M202947200

E. Thinon, R. Serwa, and M. Broncel, Global profiling of co- and post-translationally N-myristoylated proteomes in human cells, Nature Communications, vol.336, 2014.
DOI : 10.1038/ncomms5919

D. Towler, J. Gordon, S. Adams, and L. Glaser, The Biology and Enzymology of Eukaryotic Protein Acylation, Annual Review of Biochemistry, vol.57, issue.1, pp.69-99, 1988.
DOI : 10.1146/annurev.bi.57.070188.000441

M. Tschöp, D. Smiley, and M. Heiman, Ghrelin induces adiposity in rodents, Nature, vol.407, issue.6806, pp.908-913, 2000.
DOI : 10.1038/35038090

A. Wolk, M. Furuheim, and B. Vessby, Fatty acid composition of adipose tissue and serum lipids are valid biological markers of dairy fat intake in men, J. Nutr, vol.131, pp.828-833, 2001.

S. Yang, A. Shrivastav, and C. Kosinski, N-Myristoyltransferase 1 Is Essential in Early Mouse Development, Journal of Biological Chemistry, vol.280, issue.19, pp.18990-18995, 2005.
DOI : 10.1074/jbc.M412917200

J. Zhang, P. Ren, and O. Avsian-kretchmer, Obestatin, a Peptide Encoded by the Ghrelin Gene, Opposes Ghrelin's Effects on Food Intake, Science, vol.310, issue.5750, pp.996-999, 2005.
DOI : 10.1126/science.1117255