H. Demrati, T. Boulard, H. Fatnassi, A. Bekkaoui, H. Majdoubi et al., Microclimate and transpiration of a greenhouse banana crop, Biosystems Engineering, vol.98, issue.1, 2007.
DOI : 10.1016/j.biosystemseng.2007.03.016

A. Granier and D. Loustau, Measuring and modelling the transpiration of a maritime pine canopy from sap-flow data Agricultural and Forest Meteorology, pp.71-61, 1994.

S. Irmak and D. Mutiibwa, On the Dynamics of Stomatal Resistance: Relationships between Stomatal Behavior and Micrometeorological Variables and Performance of Jarvis-Type Parameterization, Transactions of the ASABE, vol.52, issue.6, 2009.
DOI : 10.13031/2013.29219

P. G. Jarvis, The Interpretation of the Variations in Leaf Water Potential and Stomatal Conductance Found in Canopies in the Field, Philosophical Transactions of the Royal Society B: Biological Sciences, vol.273, issue.927, 1976.
DOI : 10.1098/rstb.1976.0035

J. Jaynes, X. Ding, H. Xu, W. K. Wong, and C. M. Ho, Application of fractional factorial designs to study drug combinations, Statistics in Medicine, vol.52, issue.2, pp.307-318, 2013.
DOI : 10.1002/sim.5526

A. Kichah, P. E. Bournet, C. Migeon, and T. Boulard, Measurement and CFD simulation of microclimate characteristics and transpiration of an Impatiens pot plant crop in a greenhouse, Biosystems Engineering, vol.112, issue.1, 2012.
DOI : 10.1016/j.biosystemseng.2012.01.012

URL : https://hal.archives-ouvertes.fr/hal-00841037

G. Li, L. Lin, Y. Dong, D. An, Y. Li et al., Testing two models for the estimation of leaf stomatal conductance in four greenhouse crops cucumber, chrysanthemum, tulip and lilium. Agricultural and Forest Meteorology, 2012.

T. Lundstedt, E. Seifert, L. Abramo, B. Thelin, A. Nystr?-om et al., Experimental design and optimization, Chemometrics and Intelligent Laboratory Systems, vol.42, issue.1-2, pp.169-743900065, 1998.
DOI : 10.1016/S0169-7439(98)00065-3

L. Misson, J. A. Panek, and A. H. Goldstein, A comparison of three approaches to modeling leaf gas exchange in annually drought-stressed ponderosa pine forests, Tree Physiology, vol.24, issue.5, pp.529-541, 2004.
DOI : 10.1093/treephys/24.5.529

D. C. Montgomery, Design and analysis of experiments, 2008.

R. H. Myers and D. C. Montgomery, Response surface methodology: Process and product in optimization using designed experiments, 1995.

M. Sourgnes, C. Migeon, H. Bouhoun-ali, P. Bournet, P. Cannavo et al., Ability of multiplicative models to simulate stomatal resistance along plant growth: application to the New Guinea Impatiens grown in greenhouse, Acta Horticulturae, 2015.

J. Stewart, Modelling surface conductance of pine forest Agricultural and Forest Meteorology, pp.168-192390003, 1988.

G. Vicente, A. Coteron, M. Martinez, and J. Aracil, Application of the factorial design of experiments and response surface methodology to optimize biodiesel production, Industrial Crops and Products, vol.8, issue.1, pp.926-669010003, 1998.
DOI : 10.1016/S0926-6690(97)10003-6

Z. Wei, Y. Liu, D. Xu, J. Cai, and B. Zhang, Application and comparison of winter wheat canopy resistance estimation models based on the scaling-up of leaf stomatal conductance, Chinese Science Bulletin, vol.54, issue.23, 2013.
DOI : 10.1007/s11434-013-5858-3

G. R. Yu, K. Nakayama, N. Matsuoka, and H. Kon, A combination model for estimating stomatal conductance of maize (Zea mays L.) leaves over a long term Agricultural and Forest Meteorology, pp.168-192300087, 1998.