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Abstract

Seed longevity, defined as the ability to remain alive during storage, is an important agro-

nomic factor. Poor longevity negatively impacts seedling establishment and consequently

crop yield. This is particularly problematic for soybean as seeds have a short lifespan. While

the economic importance of soybean has fueled a large number of transcriptome studies

during embryogenesis and seed filling, the mechanisms regulating seed longevity during

late maturation remain poorly understood. Here, a detailed physiological and molecular

characterization of late seed maturation was performed in soybean to obtain a comprehen-

sive overview of the regulatory genes that are potentially involved in longevity. Longevity

appeared at physiological maturity at the end of seed filling before maturation drying and

progressively doubled until the seeds reached the dry state. The increase in longevity was

associated with the expression of genes encoding protective chaperones such as heat

shock proteins and the repression of nuclear and chloroplast genes involved in a range of

chloroplast activities, including photosynthesis. An increase in the raffinose family oligosac-

charides (RFO)/sucrose ratio together with changes in RFO metabolism genes was also

associated with longevity. A gene co-expression network analysis revealed 27 transcription

factors whose expression profiles were highly correlated with longevity. Eight of them were

previously identified in the longevity network of Medicago truncatula, including homologues

of ERF110, HSF6AB, NFXL1 and members of the DREB2 family. The network also con-

tained several transcription factors associated with auxin and developmental cell fate during

flowering, organ growth and differentiation. A transcriptional transition occurred concomitant

with seed chlorophyll loss and detachment from the mother plant, suggesting the activation

of a post-abscission program. This transition was enriched with AP2/EREBP and WRKY

transcription factors and genes associated with growth, germination and post-transcriptional

processes, suggesting that this program prepares the seed for the dry quiescent state and

germination.
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Bolsa de estágio pesquisa no exterior BEPE 2014/

00533-1). OL was supported by the Conselho

https://doi.org/10.1371/journal.pone.0180282
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0180282&domain=pdf&date_stamp=2017-07-12
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0180282&domain=pdf&date_stamp=2017-07-12
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0180282&domain=pdf&date_stamp=2017-07-12
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0180282&domain=pdf&date_stamp=2017-07-12
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0180282&domain=pdf&date_stamp=2017-07-12
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0180282&domain=pdf&date_stamp=2017-07-12
https://doi.org/10.1371/journal.pone.0180282
https://doi.org/10.1371/journal.pone.0180282
http://creativecommons.org/licenses/by/4.0/
http://www.capes.gov.br/
http://www.fapesp.br/


Introduction

Soybean is one of the most important oil crop species for food, feed and a range of industrial

applications. Producing highly vigorous seeds is a key lever to increase crop production. Seed

longevity, defined as the ability to remain alive during storage under dry conditions, is an

important agronomic factor in the preservation of seed fitness after harvest [1]. Poor longevity

leads to unexpected losses in seed viability during storage and negatively impacts seedling

establishment and crop yield [1, 2]. This is particularly problematic for soybean as seeds have a

short lifespan during storage, especially in humid and tropical environment [2–4]. In addition,

longevity is pivotal to ensure the preservation of our genetic resources through dry seeds of

crops and wild species [5, 6].

Longevity is conferred by the ability to stabilize the biological entity for long periods of

time by the formation of an amorphous highly viscous, solid-like matrix (i.e. a glassy state) in

the cells that suspends integrated metabolic activities and severely slows down deteriorative

reactions [2, 7, 8]. Seed longevity is also attributed to a range of protective compounds [9, 10],

including non-reducing soluble sugars (sucrose (Suc) and raffinose (Raf) family oligosaccha-

rides, RFO [11, 12]) and a set of late embryogenesis abundant (LEA) proteins and heat shock

proteins (HSP) [13–15]. Together with sugars, both types of proteins act as chaperones and

molecular shields to prevent protein denaturation and membrane destabilization during dry-

ing and in the dry state. Longevity is also conferred by antioxidant mechanisms that limit

oxidation of lipids, proteins and nucleic acids during storage such as glutathione [16 and refer-

ences therein], tocopherols [17], flavonoids that are present in the seed coat [18] and lipocalins

[19]. Several repair mechanisms also contribute to longevity when they are activated during

seed imbibition to fix damage that occurred to proteins and DNA during storage [20, 21].Next

to protection and repair, an impaired degradation of chlorophyll appears to negatively affect

longevity [12, 22]. The presence of chlorophyll is considered as an indicator of immaturity but

how it affects longevity remains unsolved.

To be commercially successful, crop seeds should be harvested when longevity reaches its

maximum [1, 10]. In legumes, longevity is progressively acquired during seed maturation

from seed filling onwards [10, 23–25]. In soybean, there exist conflicting data as to whether

seed longevity reaches a maximum at seed filling [4, 26] or later during maturation [25, 27].

Delaying harvest to obtain maximum longevity increases the risk of exposing mature seeds to

rapid deterioration in the field due to high humidity and temperature [25–27]. The mecha-

nisms regulating the acquisition of seed longevity and vigor during late maturation remain

poorly understood. Hence, the dearth of knowledge of late seed maturation programs remains

an obstacle to commercial production of high quality seeds.

In soybean, transcriptome studies generated a wealth of data describing seed development dur-

ing embryogenesis and filling [28–33]. However, there is little information on transcriptome

changes occurring in soybean during late seed maturation, when longevity is acquired. The pur-

pose of this study was to provide a physiological and molecular characterization of the soybean

seed maturation using RNAseq to obtain a comprehensive overview of the regulatory genes that

are potentially involved in seed longevity. Our data show that a developmental program is activated

during late maturation that is more complex than a simple arrest of seed filling and seed drying.

Material and methods

Plant material and seed physiology

Soybean plants (Glycine max L. cv. BRS284) were grown using standard planting and cultural

techniques in the experimental farm of the São Paulo State University in Botucatu (Brazil)
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during two consecutive years (2012/2013; 2013/2014). Seed development was monitored using

phenological stages [34] and flower tagging (for 2014 only). Intermediate phenological stages

between at R7 and R8 (for both years) were incorporated in order to obtain a higher precision

of the time course of acquisition of physiological quality attributes after seed filling (S1 Table).

The relationship between seed age and phenological stages is shown in Fig 1. Pods were manu-

ally removed and seeds were used immediately. For germination assays, 4 replicates of 25

seeds were imbibed in moistened paper rolls at 25˚C. To test desiccation tolerance, seeds har-

vested at different stages were subjected to fast drying by incubation at 40% RH at 30˚C until

they reached a moisture content of 10% (dry weight basis, DW) (i.e. after 2 days). Thereafter,

seed germination was assayed as described above. To assess longevity, immature artificially

dried and mature seeds were stored in the dark at 35˚C at 75% RH using hermetically closed

containers containing a saturated NaCl solution. The water content of the seeds at these condi-

tions was 0.13 g H2O/g DW-1. At different time intervals, 4 replicates of 25 seeds were retrieved

and imbibed as described above, and final germination percentage was counted.

Soluble sugar assay

Soluble sugar contents were assessed separately in cotyledons and embryonic axes from the

phenological stage R6 onwards using DIONEX-HPLC according to Rosnoblet et al. [35]. Anal-

ysis was performed on triplicates of 6 axis and cotyledons.

RNA sequencing, quality control and reads alignment

Developing and mature seeds harvested from up to 200 plants of the 2014 crop at each stage

were frozen in liquid nitrogen. Total RNA was extracted using the NucleoSpin1 RNA Plant

kit (Macherey-Nagel) according to the manufacturer instructions. Total RNA from high qual-

ity samples (RIN values > 8.9 evaluated by a 2100 Bioanalyzer, Agilent Technologies, Santa

Clara, CA, USA) were used for library preparation sequencing at the Laboratório Central de

Tecnologias de Alto Desempenho em Ciências da Vida (LaCTAD) from the University of

Campinas, Brazil. cDNA libraries were generated using the TruSeq RNA sample preparation

kit (Illumina, San Diego, CA, USA). After estimation of the insert size of the libraries and

quantification using quantitative PCR, samples were diluted and pooled. Three lanes were

sequenced using a HiSeq2500 (Illumina) with the TruSeq SBS Kit v3-HS, according to the

manufacturer instructions. Sequencing adaptors and low complexity reads were removed in

an initial filtering step. After quality control, reads were mapped to the ‘Williams 82’ soybean

reference genome (assembly Glyma.Wm82.a1.0, annotation v2.0) using Bowtie2 [36]. RNAseq

data were deposited in the NCBI Gene Expression Omnibus database (accession no.

GSE98199).

Transcriptome and gene network analysis

Estimation of differential gene expression and statistical analyses were performed using

DESeq2, v1.11.21 [37] available as a R Bioconductor package. Genes were retained as differen-

tially expressed when the ratio was at least two-fold and the P-value adjusted for multiple testing

using the Benjamini-Hochberg (BH) method<0.05. Relative expression data were normalized

by dividing the mean normalized gene expression value obtained of the stage n+1 by the value

obtained of stage n. Functional enrichment of gene ontology (GO) was performed using the

GO enrichment tool of Soybase (https://www.soybase.org) with the Glyma 2.0 gene model.

Data used for the generation of the transcription factor network corresponded to genes

encoding transcription factors (TF) that varied in their expression profiles during devel-

opment. A total of 754 TF were retained with transcripts levels showing a variance >1
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throughout seed development. The gene co-expression network was constructed using

the Expression Correlation Plugin for Cytoscape, with a Pearson correlation coefficient

(PCC) cutoff of 0.97, only including positive correlations. Gene interactions were visual-

ized using the open source software Cytoscape (version 2.8.1) using an organic layout.

Identification of genes correlated with longevity was obtained using the trait based gene

significance measure [24, 38] where the gene significance of a gene equals the absolute

correlation between the gene expression profile and longevity expressed as P50 (days to

obtain 50% germination during storage).

Fig 1. Seed and pod development of soybean. (A) Seed phenological stages during the acquisition of seed

longevity (2013 crop). (B) The relationship between seed age and phenological stages (2014 crop). Stage 9

corresponds to dry mature seeds.

https://doi.org/10.1371/journal.pone.0180282.g001
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Quantitative PCR

RNA extraction was performed as previously described on three biological replicates of 30 seeds.

First strand cDNA was synthesized from 2 μg total RNA using High Capacity RNA-to-cDNA kit

(Applied Biosystems, place) following manufacturer’s instructions. Quantitative real time PCR

was performed on a thermocycler Eco Real-Time (Illumina) with SYBR Green qPCR ReadyMix

(Sigma Aldrich, place) using the manufacturer’s instructions. Data were analyzed with EcoStudy

program version 5.0 (Illumina). Primer efficiency was calculated as described in Ruiter et al.

[39]. Relative expression levels were calculated using the comparative 24(Ct) method [40] using

two reference genes, 20S proteasome subunit beta (Glyma.06G078500) and 60S ribosomal pro-

tein L6 (Glyma.15G271300) [41]. In our RNAseq dataset, transcript levels of both genes showed

little variation (variance of 0.035 and 0.08 respectively). Forward and reverse primers used for

these genes are listed in S2 Table.

Results

Seed longevity is acquired at the end of maturation

Various events related to seed maturation were characterized in two consecutive years between

reproductive stages R5 and R9. Seeds were collected at similar phenological stages between the

2013 and 2014 cultures to allow for comparison. Since no major developmental differences

were found between both crops (S1 Fig), only data from the 2014 crop are presented here. Fig

2A shows that the end of the seed filling phase occurred around 63 d after flowering (DAF,

corresponding to stage 7.2), whereas the onset of maturation drying started at 71 DAF (stage

8.1). The end of the seed filling phase also coincided with the abscission of seeds from the

mother plant. At 57 DAF (stage 7.1) and 63 DAF (stage 7.2), 88% and 6% of the seeds were still

attached to the fruit, respectively. At stage 7.3, all seeds were detached from the mother plant. In

agreement with earlier works [4, 25, 27], germination capacity was acquired early during seed

filling, between 25 and 57 DAF (stage 7.1). Desiccation tolerance, i.e. the ability to germinate

after fast drying to 10% moisture, was acquired between 57 and 63 DAF (Fig 2B). There was no

significant difference in the acquisition of these traits between the 2013 and 2014 crops (S1 Fig).

From the loss of viability curves during storage at 75% RH and 35˚C (Fig 2C), the longevity,

expressed as the time to obtain 50% germination after storage (P50), was calculated. Seed lon-

gevity was progressively acquired shortly after the seed filling phase. During maturation, P50

values increased sharply between 57 and 63 DAF (stage 7.2) from 0 to 28 d (Fig 2B). Thereafter,

P50 increased almost two-fold during further maturation, reaching 48 d in mature dry seeds.

Longevity data obtained for the 2013 crop followed a similar trend as those of 2014 (S1 Fig),

with the P50 being on average 18% lower than the 2014 crop. Monitoring field humidity and

temperature revealed that the 2014 crop grew under significant higher average temperatures

compared to 2013 (26.5˚C and 30.2˚C for 2013 and 2014, respectively).

Transcriptome profiling during late maturation highlights dynamic

changes during the acquisition of longevity

To characterize transcriptome changes during the end of seed maturation, total RNA was

extracted from six stages from whole seeds during development from stage 7.1 until stage 9. A

replication of stage of 7.2 and 9 was nested in the experimental design to assess reproducibility

of the data. After sequencing and assembly, RNAseq produced between 14 and 38 million

reads per library, with all libraries having >90% reads mapping (Table 1).

From this dataset, 16,248 genes were retained as differentially expressed throughout the

samples (i.e. with a variance > 1), S3 Table. PPC calculations and principal component
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Fig 2. Physiological characterization of soybean seed maturation. (A) Evolution of seed dry weight (back

circle) and water content (blue square). Data are the means (± SE) of 3 to 5 replicates of 20 seeds. (B)
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analysis were performed to assess the dynamic response of the transcriptome throughout the

maturation stages (Fig 3). Two transcriptional switches occurred during seed maturation, the

first one between stage 7.1 and 7.2, visualized by the correlation matrix, and the second one

between stage 7.3 and 8.1, apparent from the correlation matrix and the principal component

analysis (Fig 3). Data from the two biological replicates were highly similar, with between 98%

and 97% similarity between the two biological replicates of stage 7.2 and stage 9.

Using Pageman (MAPMAN, GABI Germany), a gene ontology (GO) enrichment was per-

formed to obtain an overview of the different biological processes that are overrepresented at the

different stages of seed maturation (Fig 4). Stages 7.1 (and to a lesser extend stage 7.2) were char-

acterized by an over-representation of functional classes related to growth and metabolic activi-

ties, reflecting the active seed filling that still went on in these green seeds. These classes included

photosystem light reaction, starch synthesis, lipid metabolism and amino acid degradation, as

well as storage proteins, protein targeting secretory pathway and cell vesicle transport. At stage

7.2–7.3, these classes were no longer over-represented, indicating the end of seed filling at the

molecular level. From this developmental stage onwards, the class “abiotic stress” became over-

represented, as well as functional classes related to raffinose family sugars and protein degrada-

tion (ubiquitin), whereas classes corresponding to “signaling” became underrepresented. At stage

8.1, a transition occurred with a temporary overrepresentation of protein synthesis (elongation

and ribosomal protein synthesis) and an underrepresentation of cell wall degradation and biotic

stress. From stage 8.2 onwards, functional classes that became overrepresented were related to

mitochondrial electron transport/ATP synthesis and abiotic stress (wounding/touch) (Fig 4).

Accumulation of RFO in relation to the acquisition of longevity

One of the major changes occurring during seed maturation is the accumulation of RFOs.

Numerous studies exist on the accumulation of these sugars during soybean seed development

Acquisition of germinability (●, black circle) and desiccation tolerance (blue circle), evaluated after fast drying

to 10% moisture and longevity (red triangle) as assessed by P50 (time necessary to obtain a loss of viability of

50% during storage 35˚C and 75% RH). Data are the means (± SE) of 4 replicates of 25 seeds. (C) Loss of

seed germination during storage at 75% HR, 35˚C. Data are the mean of 4 replicates of 25 seeds harvested at

indicated phenological stages.

https://doi.org/10.1371/journal.pone.0180282.g002

Table 1. Mapping of single-end reads to the soybean genome.

DAF Stage F/D # reads # Mapped reads % Mapped reads

57 7.1 F 25 673,031 24 112,015 93.9

63 7.2a rep 1 F 38 088,839 34 971,702 91.8

7.2b rep 2 F 34 381,008 31 799,644 92.5

7.2a rep1 D 14 259,082 12 881,662 90.3

7.2b rep2 D 66 764,127 60 626,937 90.8

69 7.3 F 22 267,371 20 475,504 92.0

71 8.1 F 14 533,337 13 392,050 92.2

73 8.2 F 22 057,408 19 621,133 89.0

77 9a rep 1 F 28 824,583 26 457,357 91.8

9b rep 2 F 23 064,604 21 097,336 91.5

# reads, number of reads following trimming of the libraries for quality

# mapped reads, number of reads that unambiguously mapped to the soybean genome. Percentages of mapped sequences are also indicated. DAF, days

after flowering; Rep, replicates. F: Freshly harvested seeds; D: rapidly dried seeds

https://doi.org/10.1371/journal.pone.0180282.t001

Late maturation and longevity of soybean seeds

PLOS ONE | https://doi.org/10.1371/journal.pone.0180282 July 12, 2017 7 / 25

https://doi.org/10.1371/journal.pone.0180282.g002
https://doi.org/10.1371/journal.pone.0180282.t001
https://doi.org/10.1371/journal.pone.0180282


[42–44], but how this increase relates to the acquisition of seed longevity is unknown. The

transcriptome analysis identified an overrepresentation of genes involved in RFO metabolism

during maturation (Fig 4). Considering their controversial role in the survival in the dry state

[10], we investigated the accumulation of the different soluble sugars in the axes and cotyle-

dons during seed maturation and assessed whether these metabolic changes occurred in rela-

tion to the acquisition of longevity (Fig 5). Both in axes and cotyledons, glucose (Glc) and

fructose (Fru) contents were highest during the seed filling phase and decreased throughout

further maturation to almost undetectable levels. For Glu, this decrease occurred earlier in cot-

yledons compared to axes (Fig 5A and 5D). In axes, Suc contents remained high during the

seed filling phase at around 80 mg/g DW (Fig 5B). At 57 DAF, Suc started to decrease until 73

DAF, when the seed moisture was 28% (DW basis). In cotyledons, Suc levels exhibited a sharp

decrease at the end of the seed filling phase from 33 mg/DW at 57 DAF to 13 mg/g DW at 63

DAF (stage 7.2), concomitant with the decrease in Glu content and increase in longevity.

Thereafter, Suc content remained constant until the dry state, representing 55% of the total

amount of soluble sugars in the cotyledons. Stachyose (Sta) was the preponderant RFO in dry

seeds, representing 90% of the total amount of RFO. In axis, its pattern of accumulation coin-

cided with the acquisition of desiccation tolerance rather than longevity (Fig 5C). Sta accumu-

lated during seed filling between 46 and 63 DAF then remained at steady level. In cotyledons,

Sta contents increased later during maturation than in axis, along with the increase in longev-

ity until 73 DAF (Fig 5F). Thereafter it decreased by ca. 30% during further maturation drying.

The RFO/Suc ratio in the axis increased concomitantly with the increase in longevity (Fig 5B).

By comparing Fig 5B and 5C, two successive factors contributed to this increase; first the syn-

thesis of Sta (up to stage 7.3) then a decrease in Suc contents. In the cotyledons, the increase in

RFO/Suc was mainly driven by the synthesis of RFO. Thus, the RFO/Suc ratio, especially in

the embryonic axis, seems to be a good indicator of the seed longevity acquisition during mat-

uration in this indeterminate cultivar.

Identification of the transcription factor network involved in late seed

maturation

To obtain information on the regulatory factors underlying the transcriptional and biochemi-

cal changes during maturation, changes in transcript profiles of genes encoding TF, represent-

ing 1086 genes belonging to 32 families, were further analyzed. To capture the temporal

regulation of the TF transcripts during maturation, a gene co-expression network was con-

structed. The resulting scale-free network contained 499 nodes and 12,183 edges and was visu-

alized using the cytoscape organic layout algorithm (Fig 6A). To understand the topology of

the network, nodes were colored based on their expression profile, with the stage at which

transcript levels were maximum. The network consisted of a central cluster of interacting

nodes corresponding to genes with highest transcript level at the end of seed filling (Fig 6A,

stage 7.1, dark green), followed by a tail composed of probes corresponding to TF with highest

transcript level during the transition between seed filling and maturation drying phase (stage

7.2, light green). A second cluster that was disconnected from the main cluster represented TF

with transcripts being maximum at stage 8.2 (yellow), 8.3 (orange) and 9 (mature seeds, grey).

Twenty four families of TF were present in the network (S4 Table, Fig 6A). Using a χ2 test-

ing the null hypothesis that these families are randomly enriched in the different stages, AP2/

EREBP and WRKY were the only families that were significantly enriched in the tail with

genes exhibiting a transient expression profile with a maximum level around stage 7.2 and 7.3.

At these stages, AP2/EREBP and WRKY represented 20% (p = 0.005) and 11% (p = 0.048) of

all TF found differentially expressed, respectively. A closer inspection of these TF revealed

Late maturation and longevity of soybean seeds
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Fig 3. Correlation and principal component analyses of soybean transcriptomes during seed

maturation. (A) Pair-wise Pearson correlation coefficients were used to generate the heat map. The color
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genes involved in germination and organ growth, flowering, chloroplast dismantling, defense

and ABA signaling.

Next, we used the trait-based gene significance measure [38] to integrate the acquisition

of longevity in the TF gene co-expression network to identify those TF that exhibit transcrip-

tion profiles highly correlating with P50. For this purpose, PCC were calculated between the

scale indicates the degree of correlation (blue, low; yellow, high). (B) and (C) Principal component analysis

performed using median centering of the transcriptomes of seed phenological stages. 7.2D, transcriptomes of

rapidly dried seeds at stage 7.2. The letters a,b, correspond to biological replicates.

https://doi.org/10.1371/journal.pone.0180282.g003

Fig 4. Over-representation analysis of functional classes during seed maturation. Functional classes

and subclasses statistically affected are indicated according to Mapman ontology. Data were subjected to a

Bin-wise Wilcoxon test and resulting p-values were adjusted according to Bonferroni. The scale bar indicates

the z-score calculated from p-values (i.e. p-value of 0.05 represents a z-score of 1.96 after adjustment). Over-

represented and under-represented classes are indicated respectively in blue and yellow.

https://doi.org/10.1371/journal.pone.0180282.g004
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transcript levels of all TF genes and the P50 value during maturation (S4 Table). When genes

with a PCC>0.9 were projected on the TF network, 27 TFs were identified that formed a

highly co-expressed module (blue nodes Fig 6B, S4 Table). A total of 8 of the 27 genes belonged

to the AP2/EREBP family, including four homologues of ETHYLENE RESPONSE FACTOR

(ERF10, a member of the ERF subfamily B4, PCC>0.98) and homologues of the Arabidopsis

DREB2C and DREB2F. Other TF belonged to families such as WRKY, auxin response factor,

homeodomain-like proteins (S4 Table) and X-box binding transcriptional repressor family

with a homologue of NUCLEAR TRANSCRIPTION FACTOR X-BOX BINDING LIKE 1

(NFXL1), a gene previously found in the longevity modules of M. truncatula and Arabidopsis

co-expression network during seed maturation [24]. In addition, two heat shock factors (HSF,

Glyma.03g191100 and Glyma.03g157300) were present in the list of the 27 TFs. RT-qPCR on

additional seed samples from different developmental stages validated their increased tran-

script level during maturation (Fig 7A and 7B), with expression profiles being comparable to

those obtained by RNAseq (r2>0.8). Interestingly, inspection of the Soybase gene expression

profile showed that the paralogs of these two genes are not expressed in seeds. These HSF are

Fig 5. Changes in soluble sugar contents in axis and cotyledons during maturation. Data are the

average of triplicates (± SE) using 6 axis (A-C) and 6 cotyledon pairs (D-E) from the 2014 crop. The changes

in RFO/Suc ratio are shown in panel B and E for axes and cotyledons, respectively. The increase in longevity

(P50) is indicated as a grey area as a help to the eye. (A, D) Glc, glucose and Fru, fructose; (B, E) Suc,

sucrose and RFO/Suc ratio; (C, F) Raf, Raffinose, Sta, Stachyose and Ver, Verbascose.

https://doi.org/10.1371/journal.pone.0180282.g005
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transcriptional regulators known to activate small heat shock proteins (HSP). Consistent with

this, analysis of the most differentially expressed genes between stage 7.2 and stage 9 (Int

(log2)>4) that correlated with longevity (PPC>0.85) shows that many of these genes code for

small HSP (Fig 8). RT-qPCR data confirmed the increase of transcript levels during final matu-

ration for three sHSPs (Fig 7C–7E).

Comparative analysis of dried, immature short-lived seeds with mature

long-lived seeds identifies developmental indicators linked to longevity

Premature drying of immature seeds (stage 7.2) leads to reduced acquisition of longevity com-

pared to fully mature seeds (Fig 2). A comparison of the transcriptome of these immature

seeds with fully mature seeds can be used for further investigation of markers for longevity.

First, the impact of enforced drying on the transcriptome of seeds harvested at stage 7.2 was

visualized by PCA analysis (Fig 3). In comparison with the freshly harvested immature seeds,

Fig 6. Transcription factor co-expression network of soybean seed maturation. (A) Gene co-expression

network of seed maturation visualized using an organic layout in Cytoscape. Temporal analysis of nodes in the

network was obtained by coloring each gene by its specific expression profile during seed development. Dark-

green; high transcript levels at seed filling (stage7.1); green, light-green and yellow, transitory transcript levels

maximum at stage 7.2, 7.3 and 8.1 respectively; light-orange, dark-orange and grey, transcript levels increasing

during late seed development, being maximum at stage 8.2, 8.3 and stage 9. (B) Zoom on the gene module

corresponding to late maturation. Nodes correlating with longevity (PCC>0.9) are colored in blue. Text labels

indicate gene numbers.

https://doi.org/10.1371/journal.pone.0180282.g006
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Fig 7. qPCR analysis of selected genes during seed maturation validates RNA-Seq data. (A) Heat

shock transcription factor A3 (HSFA3: Glyma.03g191100); (B) Heat shock transcription factor A6B (HSFA6B:

Glyma.03g157300); (C) sHSP17a (Glyma.17g224900); (D) sHPS17b (Glyma.14g099900), (E) sHSP21

(Glyma.08g318900). Data (±SE) are the average of three biological replicates of 30 seeds.

https://doi.org/10.1371/journal.pone.0180282.g007

Fig 8. Heat map of most differentially expressed genes correlating with longevity. Genes were retained

when the log2 intensity > 4 between stage 7.2 and 9 and that correlate with longevity (PPC P50>0.85). Genes

were log2 mean centered and colored from the lowest (green) to highest values (red).

https://doi.org/10.1371/journal.pone.0180282.g008
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the transcriptome of the dried immature seeds was positioned between those of seeds har-

vested at stage 7.3 and 8.1 in the PCA plot (Fig 3). Apparently, premature drying accelerated

the maturation of the seeds: in planta, the time lapse between stage 7.2 and 7.3 was 6–7 days

(Fig 1), whereas it took only two days to dry the seeds harvested at stage 7.2.

Transcriptome comparison between immature, rapidly dried seeds and mature seeds iden-

tified 742 genes with transcripts that were significantly higher in seeds with high longevity

compared to those with low longevity, whereas 1525 genes had transcripts that were lower in

the seeds with high longevity (S5 Table). Next, we investigated how many of these transcripts

also changed during enforced drying. For this purpose, a statistical analysis was performed to

identify the differentially expressed genes in seeds of stage 7.2 before and after enforced drying

(S5 Table). A total of 5423 transcripts were up-regulated and 4931 down-regulated upon

enforced drying of the seeds. The Venn diagram (Fig 9) shows that out of the 742 genes with

higher transcript level at stage 9 compared to stage 7.2D, 139 (19%) also increased significantly

during enforced drying. For the down-regulated transcripts, 207 out of the 1525 (14%) also

responded to the enforced drying of the immature seeds (Fig 9, S5 Table).

A Gene Ontology (GO) enrichment analysis of the 139 differentially expressed genes with

higher transcript level in both dried immature seeds and dry mature seeds revealed an overrep-

resentation of biological functions related to response to heat, hydrogen peroxide and high

light intensity (Table 2). A closer look at the expression profiles of these genes showed that

they increased sharply between stage 7.2 and stage 8.1, with a further gradual increase until

stage 9 (S3 Table). Considering that enforced drying resulted in a transcriptome that was com-

parable to stages 7.3–8.1, the increased transcript levels between 7.2F and 7.2D could be the

result of an accelerated maturation.

An analysis of the enrichment of biological functions of the 603 genes that were up-regu-

lated during maturation drying in planta but not upon enforced drying of freshly harvested

seeds of stage 7.2 revealed functions related to pyrimidine ribonucleotide biosynthetic process,

protein import into nucleus and protein targeting to mitochondrion, and nucleosome assem-

bly (Table 3). Another biological function that was overrepresented is RNA methylation.

Regarding the 207 genes that were down-regulated between stage 7.2D and stage 9 as well

as stage 7.2F and stage 7.2D, no GO enrichment was found. In contrast, the enrichment analy-

sis of differentially expressed genes with lower transcript levels in seeds with high longevity

(1318) revealed an overrepresentation of biological functions related to response to generation

of precursor metabolites, transcription, as well as cellular respiration (Table 4). In addition,

biological processes to photosynthesis were down-regulated. A closer inspection of the list of

genes belonging to these GO categories revealed that all of them were associated with various

chloroplast functions such as photosynthesis and starch and lipid synthesis. Interestingly, the

list also contained 69% of the soybean chloroplast genes (77 out 111, S5 Table), including

those involved in the photosystem II reaction, ATP synthase sub-units, Calvin cycle (Rubisco

large subunit), chlorophyll binding and translation (RNA polymerase, ribosomal proteins,

maturase K). In addition, we found two homologues of STAY-GREEN1; an important gene

involved in chlorophyll catabolism and photosystem degradation [45]. A large number of

these genes were strongly upregulated in seeds of stage 7.2 that were submitted to enforced

drying compared to freshly harvested seeds (S5 Table). Considering the acceleration of matu-

ration in the dried seeds, this increase can be explained in part by their transitory expression

profile, with transcript levels being higher in seeds at stage 8.1 compared to stage 7.2 (S3

Table).

Furthermore, an overrepresentation was found of processes related to water deprivation

and salt stress (Table 4), which included genes involved in RFO metabolism such as galactinol

synthase (Glyma.03g229800, Glyma.20g094500), raffinose synthase (Glyma.06g179200). In the
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GO term “response to water deprivation”; we noticed two Arabidopsis homologues of a RING

domain ligase, namely RGLG1 and RGLG2, that have a ubiquitin E3 ligase activity and medi-

ate the transcription of AtERF53 in response to drought [46].

Discussion

Poor longevity results in economic losses due to the impossibility of carry-over of seed

lots, having lost their vigor and viability so that they are no longer marketable. Identifica-

tion of the underlying regulatory factors should provide information to design marker for

Fig 9. Venn diagrams identify transcripts correlating with longevity. Venn diagrams comparing

transcripts that are differentially expressed in immature seeds that are rapidly dried at stage 7.2 (7.2D)

compared to dry, mature seeds (stage 9) and transcripts that are differentially expressed between freshly

harvested seeds at stage 7.2 (7.2F) and rapidly dried seeds at stage 7.2 (7.2D). Genes were considered

statistically different when the absolute ratio was at least two fold with a P(BH)<0.01. (A). Number of genes

with higher transcript levels in 9 vs 7.2D. (B). Number of genes with lower transcript levels in 9 compared to

7.2 D.

https://doi.org/10.1371/journal.pone.0180282.g009
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prebreeding aiming to improve soybean seed quality. In developing soybean seeds, physio-

logical maturity corresponds to the stage when final seed weight is reached, germination/

desiccation tolerance and seed vigor are acquired [4, 25, 27]. In this study using an indeter-

minate cultivar, physiological maturity corresponded to stage 7.2, in agreement with pre-

vious works [4]. At this stage, most seeds were detached from the mother plant and had

lost most of their chlorophyll. However, our physiological, sugar and transcriptome data

show that the seed maturation program has not yet ended at physiological maturity. An

additional period of 14 days after physiological maturity is necessary to acquire maximum

longevity (Fig 2), in agreement with previous data on other genotypes [25, 26]. During this

period, we detected 16,248 transcripts being differentially expressed until the developing

seeds reached the dry state. Our RNAseq study complements and extends previous tran-

scriptome characterization of soybean seed development [28–33]. These studies focused

mostly from fertilization to end of seed filling whereas here we characterized the phase

from end of seed filling to final maturation drying. Our RNAseq data and co-expression

network analysis suggest that complex transcriptome changes occur after the so-called

physiological maturity until the dry state, identifying several TFs associated with seed lon-

gevity. Several of these TFs were previously identified in a gene co-expression network

associated with longevity in M. truncatula and Arabidopsis [24] and thus provide new

resources for marker of seed development.

Table 2. GO enrichment analysis of the 139 differentially expressed transcripts that are significantly higher at stage 9 compared to 7.2 after drying

and common between 7.2D/7.2F and 9/7.2D.

GO term GO description Genome GO count Expressed GO Corrected P-value

Overrepresented

GO:0009408 response to heat 659 36 2.43E-22

GO:0042542 response to hydrogen peroxide 511 29 3.13E-18

GO:0009644 response to high light intensity 582 29 1.06E-16

GO:0006457 protein folding 779 29 2.24E-13

GO:0034976 response to endoplasmic reticulum stress 483 18 6.19E-08

Analysis was performed using the GO enrichment tool of Soybase using the Glyma 2.0 gene models.

https://doi.org/10.1371/journal.pone.0180282.t002

Table 3. GO enrichment analysis of the differentially expressed transcripts that are significantly higher at stage 9 compared to 7.2 after drying and

not induced upon drying between 7.2F and 7.2D.

GO term GO description Genome GO count Expressed GO Corrected P-value

Overrepresented

GO:0009220 pyrimidine ribonucleotide biosynthetic process 315 28 4.63E-21

GO:0006606 protein import into nucleus 243 23 2.69E-16

GO:0006626 protein targeting to mitochondrion 235 19 9.13E-15

GO:0006334 nucleosome assembly 128 12 2.62E-13

GO:0006164 purine nucleotide biosynthetic process 75 9 3.09E-08

GO:0001510 RNA methylation 418 22 9.26E-07

Underrepresented

GO:0006952 defense response 1116 1 3.84E-05

Analysis was performed using the GO enrichment tool of Soybase using the Glyma 2.0 gene models.

https://doi.org/10.1371/journal.pone.0180282.t003
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Important transcriptional changes occur after mass maturity before the

onset of desiccation

A salient feature of the genetic program that occurs during late seed maturation is a transitory

phase that is delimited by two transcriptional switches, one from stage 7.1 to stage 7.2, marked

by the end of seed filling, and the second between stages 7.3 and 8.1 (Fig 3). Phenotypically,

this phase is accompanied by the loss of chlorophyll, acquisition of desiccation tolerance and

the biggest increase in RFO sugars (Figs 2 and 6). A transcriptome shift was also observed in

Arabidopsis during maturation and attributed to the desiccation of the seed [47]. This is not

the case in soybean, since seed moisture content at stage 7.3 was around 1.2 g water/g DW,

thus before the desiccation phase per se. However, during this transitory phase, seeds loose

their connection to the mother plant. Concomitantly, changes in the transcriptome suggest the

activation of a post-abscission program to prepare for the dry state and germination by synthe-

sizing mRNA that will be stored until seed imbibition [48]. Several observations support this

hypothesis. Genes with expression profiles that show maximum transcript levels at stage 7.2 or

7.3, i.e. represented by the tail of the co-expression network (Fig 6), are significantly enriched

in members of the AP2/EREBP and WRKY families. AP2/EREBP transcription factors play an

important role in controlling developmental processes and in hormone, sugar and redox sig-

naling in relation with abiotic stresses [49]. Their over-representation in developing soybean

seeds was also reported by Jones & Vodkin [32]. Several homologues were found to be co-reg-

ulated with the induction of longevity in the legume M. truncatula [23]. Most of the TFs were

related to germination and growth, such as a homolog of WRKY6 (Glyma.13g310100) that in

Arabidopsis acts as a positive regulator of ABA signaling during seed germination and early

seedling development [50], the homolog of SOMNUS (Glyma.12g205700), the homolog of

HOMEOBOX 1 (HB-1), involved in hypocotyl growth under short days [51] and a homolog of

INDETERMINATE DOMAIN1/ENHYDROUS (Glyma.02g058500), that in Arabidopsis pro-

motes the transition to germination by regulating light GA effects and ABA signaling during

seed maturation [52]. We also found a B3 transcriptional repressor (Glyma.02g36090) whose

Arabidopsis homologue is a negative regulator of seed size in developing seeds [53]. Tran-

scripts associated with protein degradation via the SCF family of modular E3 ubiquitin path-

way increased during maturation drying at stage 7.3. This observation is in agreement with

previous studies [28, 32]. These proteins are known to filter the proteome by degrading key

Table 4. GO enrichment analysis of the 1318 differentially expressed transcripts that are significantly lower at stage 9 compared to prematurely

dried seeds at stage 7.2.

GO term GO description Genome GO count Expressed GO Corrected P-value

Overrepresented

GO:0006091 generation of precursor metabolites and energy 116 75 4.86E-82

GO:0006354 DNA-dependent transcription, elongation 225 75 4.58E-54

GO:0015979 Photosynthesis 452 89 3.33E-43

GO:0019684 photosynthesis, light reaction 320 42 6.04E-13

GO:0045333 cellular respiration 53 15 1.71E-08

GO:0009772 photosynthetic electron transport in photosystem II 28 11 1.47E-07

GO:0009414 response to water deprivation 888 62 5.35E-07

Underrepresented

GO:0009909 regulation of flower development 744 1 8.88E-06

GO:0006468 protein phosphorylation 2386 32 3.65E-04

Analysis was performed using the GO enrichment tool of Soybase using the Glyma 2.0 Gene Models

https://doi.org/10.1371/journal.pone.0180282.t004
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regulatory proteins as main targets [54]. This suggests that the drying seeds are setting up a

machinery for post-translational regulation before entering in the dry state that will presum-

ably serve upon imbibition.

An emerging picture of longevity-related genes identifies confirmed

regulators and newcomers in legume seeds

The network analysis revealed 27 TF whose transcript profiles are correlated with P50 (Fig 6, S4

Table), thereby forming a longevity module similar to that found in developing Arabidopsis

and M. truncatula [23, 24]. Indeed, the homologues of 7 soybean genes were also present in the

list of the 9 TF belonging to Medicago longevity module [24], namely three homologues of an

ERF110 of Arabidopsis (Glyma.06g148400, Glyma.04g217400, Glyma.08g145300), a homologue

of the ETHYLENE INSENSITIVE PROTEIN 3 family (Glyma.05g180300), two homologues of

the DREB2 family (Glyma.07g156200, Glyma.14g056200), and a homologue of NF-X-like1

gene (Glyma.09g173000). The implication of two of these genes in longevity has been demon-

strated [55, 24]. A DREB2 from sunflower enhanced seed longevity of tobacco when ectopically

over-expressed with a heat shock factor, HaHSFA9 [55]. In Arabidopsis, seeds of nfxl1 exhibited

impaired acquisition of longevity during maturation [24]. When overexpressed in vegetative tis-

sues, NFXL1 induces a higher survival upon salt stress, drought and high light intensity [56].

Several TF that highly correlated with P50 are associated with auxins and gibberellins (S3 and

S4 Tables), such a homologue of HECATE2 (Glyma.11g055300), that affects auxin responses in

Arabidopsis during flower development [57], a homologue of AUXIN RESPONSE FACTOR19

(ARF19, Glyma.13g112600, Glyma.09g072200), ARF4 (Glyma. 12G171000), ARF8 (Glyma.10G

210600) ARF9 (Glyma.03g36710), ARF10 (Glyma.13g325200), ARF16 (Glyma.10g210600). This

reinforces the link between auxin and longevity previously found in the Medicago and Arabidopsis

maturation network, where 60% of genes belonging to the longevity were significantly enriched in

binding sites for auxin response factor [24]. The putative role of auxins in inducing longevity

remains to be investigated. These auxin-related genes exhibit functions that are associated with

embryogenesis, meristem maintenance, stem cell specification, positioning of lateral organs and

organ growth meristem in connection with GA signaling [57–59]. A further inspection of the TF

present in the network tail (Fig 6) confirmed the enrichment in genes with the above mentioned

functions such as the homologue of JACKDAW (Glyma.10g051500), AINTEGUMENTA-LIKE 6

(Glyma.01g022500), SEPALLA3 (Glyma.20g153700) and GATA (Glyma.17g228700). We specu-

late that the presence of these transcripts in dry seeds may be necessary to anticipate the restoration

of the developmental fate of specific cells during germination of seeds that were damaged by ageing

during storage. Consistent with this, stem cell niches are hypersensitive to DNA damage [60],

which is a known cause for decrease in seed viability after storage [21].

The transcriptome comparison between immature short-lived and mature seeds exhibiting

maximal life span further highlights key mechanisms that could be involved in longevity. Seed

longevity correlated with the synthesis of HSPs and several chaperones implicated in protein-

protein interactions and protein folding (Table 2, Fig 8, S5 Table). They are known to assist in

creating proper-folding conditions during abiotic stress [61] and protect against oxidative

stress during storage [62] that could be conducive to seed longevity. Our transcriptome also

revealed the presence of HSFA6B (Glyma.03G157300), whose transcript profile was correlated

with P50 (S4 Table). This is consistent with the observation that the over-expression of sun-

flower HaHSFA9 in tobacco led to an increased stability against accelerated ageing of the seeds

[13]. This TF also interacts with the drought-responsive factor HaDREB2 in a seed-specific

manner to enhance stability against accelerated aging [55].
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Concomitant with the acquisition of longevity, there was an overrepresentation of genes

involved in RFO synthesis (Table 3). This was confirmed by the observation that RFO content

and the ratio Suc/RFO increased during late seed maturation (Fig 5), reinforcing the idea that

the regulation of RFO metabolism occurs at the transcriptional level [10, 12]. The role of RFO

in seeds is unclear, particularly in soybean. No defects in desiccation tolerance, seed germina-

tion or seedling emergence were reported in soybean lines with low RFO content [44, 63].

However, recent literature suggests that RFO metabolism plays a role in the acquisition of lon-

gevity. Galactinol, the precursor of RFO was found to be a marker for seed longevity in Arabi-

dopsis, cabbage and tomato [64]. In Arabidopsis, seeds of galactinol synthase mutants (gols2
and gols1gols2)were more sensitive to accelerated aging (85% RH, 40˚C) while seeds of raffi-
nose synthase (rs) and stachyose synthase (sts) mutants did not differ significantly from those of

wild type [64]. Further genetic proof for a role for RFO metabolism in longevity came from the

impaired shelf-life of Arabidopsis α-galactosidase2 (agal2) seeds stored at 75% RH and 35˚C

[24]. Suc levels were significantly higher in these mutants but no change was detected in RFO

levels. Seed-specific overexpression of CaGolS1 and CaGolS2 of chickpea in Arabidopsis

resulted in an improved resistance against controlled deterioration [11]. However, the mois-

ture content of these seeds during ageing was 24%, a value high enough to lead to increased

metabolic activity and accumulation of RFO, while this would not occur during dry storage at

RH below 75%. Additional correlative evidence of a link of RFO metabolism and longevity

comes from the analysis of mutants of two regulatory genes of seed maturation in M. trunca-
tula: Mt-abi5 and Mt-snf4b [12, 35]. Seeds of these mutants show decreased RFO accumulation

and increased Suc accumulation during maturation together with a decreased in longevity.

The underlying mechanisms that explain the role of galactinol or RFO in conferring longevity

remain elusive. A specific role of RFO in the protection of membranes or other macromole-

cules seems unlikely. Suc molecules are known to protect membranes just as efficiently as RFO

and furthermore make denser glasses (reviewed in [10]). Some studies suggest a direct or indi-

rect role of RFOs in the protection against oxidative damage during storage [11, 65]. Overall,

our data show that the RFO/Suc ratio in the embryonic axis is a good indicator of the progress

in the acquisition of longevity during maturation. However, one should keep in mind that

although this relationship is valid during seed development, it might be blurred when compar-

ing mature seeds from different genotypes, environments and date of planting.

Typically, late seed maturation is characterized by a degreening process resulting from the

degradation of chlorophyll via a multi-step catabolic pathway that is characterized mostly dur-

ing leaf senescence [41, 45]. Here, chlorophyll was lost during the transition phase, between

stage 7.1 and 7.3. Genes encoding enzymes that are required for the initiation of the degrada-

tion of chlorophyll and light harvesting complexes such as chlorophyll b reductase (NYC1,

Glyma.07g085700, Glyma.09g191200) and STAYGREEN1 (Glyma01g241600, Glyma011g

027480) were already highly expressed at stage 7.1 and increased slightly at stage 7.2. This sug-

gests that on a transcriptional level, the onset of degreening is activated prior to the induction

of longevity. Furthermore, a high number of transcripts associated with photosynthesis and

chloroplast activity were down-regulated when artificially dried immature seeds at stage 7.2

were compared with mature dry seeds at stage 9 (Table 4). This decrease involved both nuclear

and chloroplastic genes among which 69% of the genome was concerned. It might reflect a

major shutdown of chloroplast metabolism and dismantlement, which requires a close coordi-

nation between the nucleus and chloroplastic genomes. These events might be conducive to

seed longevity. The presence of green seeds in mature seed lots has been associated with a

decreased shelf-life during storage in various species, including soybean [12, 22, 66]. In Arabi-

dopsis, seeds of mutants affected in chlorophyll degradation contained 10-fold more chloro-

phyll than the wild type and had a strongly reduced longevity [22]. Chlorophyll degradation
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and longevity were affected during maturation of pea and M. truncatula seeds defective in ABC-

SISIC ACID INSENSITIVE5 [12]. The more chlorophyll was retained in mature in abi5 seeds,

the more longevity was affected. In addition, the repression in photosynthesis-associated genes

during maturation was also impaired in these abi5 mutants [12]. Thus, these data reinforce the

idea that degreening and chloroplast dismantling appears a pre-requisite for longevity.

In this study, the storage conditions were set at a RH of 75% and a temperature of 35˚C

that bring the seed tissues to a water content of 0.13 g H2O/g DW, equivalent to 11.5% on a

fresh weight basis. In commercial practice, soybean seeds are harvested at 12–14% moisture

to avoid mechanical damage and dried to 10–12% for short-term storage [4]. Drying to

lower values is known to make the seeds more susceptible to cracking. The combination

75%RH/35˚C also represents a good compromise between conditions that are deleterious

enough to induce a loss of viability to allow measurements within a reasonable experimen-

tal time but low enough to be near the glassy state where metabolism no longer occurs.

Whereas a storage environment of 75% RH/35˚C brings the cytoplasm out of the glassy

state, it is still in an amorphous rubber with solid-like properties [7, 8, 67, 68]. It has been

demonstrated that measurements of longevity in more humid conditions (i.e. � 85% RH)

are unreliable to predict life span in storage conditions corresponding to the dry state [68–

70]. In soybean, this RH will bring the water content of the tissues around 0.24 g H2O/g

DW (19% FW basis). Under these conditions, the cytoplasm will no longer be in a rubbery

state, where molecular movement will still be restricted, but rather in a liquid state, allow-

ing for metabolism to occur [7, 8, 67]. Quantitative trait loci analysis of seed aging in M.

truncatula at 60%/35˚C and 75% RH/ 35˚C revealed similar loci and data between both

aging conditions were very well correlated (r = 0.71), suggesting similar mechanisms of

deterioration between these two RH [12]. However, comparison of aging at 30% RH/9˚C

and 75% RH/50˚C in different genotypes of lettuce showed poor correlation [70]. Thus,

one should remain careful with extrapolating our soybean data to dry storage conditions

(<50% RH). Indeed, in soybean water properties change cotyledons below 8% (DW basis),

most likely due to the formation of a glassy state in the cells whereas the respiration rate

becomes detectable at 24% [71].

Supporting information

S1 Fig. Comparison of soybean seed development for the 2013 and 2014 harvest at indi-

cated phenological stages. (A) Evolution of seed dry weight (black circles) and water content

(blue squares). Data are the means (± SE) of 3 to 5 replicates of 20 seeds. (B) Acquisition of ger-

mination (black circles) and desiccation tolerance (blue squares), evaluated after fast drying to

10% moisture. (C) Acquisition of longevity as assessed by P50 (time necessary to obtain a loss

of viability of 50% during storage 35˚C and 75% RH). Data are the means (± SE) of 4 replicates

of 25 seeds. Data are presented for 2013 (open symbols) and 2014 (closed symbols).

(TIF)

S1 Table. Description of the reproductive phenological stages of soybean seeds.
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S2 Table. List of primers combination used for gene expression validation of target genes

by qRT-PCR.
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S3 Table. List of differentially expressed genes during seed maturation.
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S4 Table. Transcription factors present in the co-expression network of soybean seed mat-

uration. Genes with expression profiles that correlate with longevity (P50, PCC>0.9) are indi-

cated in bold with a blue background.

(XLSX)

S5 Table. List of differentially expressed genes associated with longevity. List of differen-

tially expressed genes that are higher/lower in mature seeds exhibiting maximal longevity

(stage 9) compared to dried immature seeds (stage 7.2D) with low longevity.

(XLSX)
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