R. S. Rao, F. Salvato, B. Thal, H. Eubel, J. J. Thelen et al., The proteome of higher plant mitochondria Protein import into plant mitochondria: Signals, machinery, processing, and regulation Multiple pathways for sorting mitochondrial precursor proteins Importing mitochondrial proteins: Machineries and mechanisms, CrossRef] [PubMed] 2. Murcha, M, pp.22-37, 2008.

N. Pfanner and A. Geissler, Versatility of the mitochondrial protein import machinery, Nature Reviews Molecular Cell Biology, vol.18, issue.5, pp.339-349, 2001.
DOI : 10.1093/emboj/18.13.3667

D. Mokranjac and W. Neupert, Energetics of protein translocation into mitochondria, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.1777, issue.7-8
DOI : 10.1016/j.bbabio.2008.04.009

URL : https://doi.org/10.1016/j.bbabio.2008.04.009

A. Bioenerg, , pp.758-762, 2008.

P. F. Teixeira and E. Glaser, Processing peptidases in mitochondria and chloroplasts, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, vol.1833, issue.2, pp.360-370, 2013.
DOI : 10.1016/j.bbamcr.2012.03.012

A. J. Perry, J. M. Hulett, V. A. Liki´cliki´c, T. Lithgow, and P. Gooley, Convergent Evolution of Receptors for Protein Import into Mitochondria, Current Biology, vol.16, issue.3, pp.221-229, 2006.
DOI : 10.1016/j.cub.2005.12.034

O. Duncan, M. W. Murcha, and J. Whelan, Unique components of the plant mitochondrial protein import apparatus, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, vol.1833, issue.2, pp.304-313
DOI : 10.1016/j.bbamcr.2012.02.015

P. Jarvis, Targeting of nucleus-encoded proteins to chloroplasts in plants, New Phytologist, vol.34, issue.2, pp.257-285, 2008.
DOI : 10.1016/S0167-4889(01)00152-5

X. P. Zhang and E. Glaser, Interaction of plant mitochondrial and chloroplast signal peptides with the Hsp70 molecular chaperone, Trends in Plant Science, vol.7, issue.1, pp.14-21, 2002.
DOI : 10.1016/S1360-1385(01)02180-X

L. Xu, C. Carrie, S. R. Law, M. W. Murcha, and J. Whelan, Acquisition, Conservation, and Loss of Dual-Targeted Proteins in Land Plants, PLANT PHYSIOLOGY, vol.161, issue.2, pp.644-662, 2013.
DOI : 10.1104/pp.112.210997

S. Huang, N. L. Taylor, J. Whelan, and A. H. Millar, Refining the Definition of Plant Mitochondrial Presequences through Analysis of Sorting Signals, N-Terminal Modifications, and Cleavage Motifs, PLANT PHYSIOLOGY, vol.150, issue.3, pp.1272-1285, 2009.
DOI : 10.1104/pp.109.137885

V. Heijne, G. Steppuhn, J. Herrmann, and R. G. , Domain structure of mitochondrial and chloroplast targeting peptides, European Journal of Biochemistry, vol.951, issue.3, pp.535-545, 1989.
DOI : 10.1016/0167-4781(88)90025-5

N. Peeters, Small, I. Dual targeting to mitochondria and chloroplasts, Biochim. Biophys. Acta Mol. Cell Res, pp.54-63, 1541.

D. Roise, S. J. Horvath, J. M. Tomich, J. H. Richards, and G. Schatz, A chemically synthesized pre-sequence of an imported mitochondrial protein can form an amphiphilic helix and perturb natural and artificial phospholipid bilayers, EMBO J, vol.5, pp.1327-1334, 1986.

T. Saitoh, M. Igura, T. Obita, T. Ose, R. Kojima et al., Tom20 recognizes mitochondrial presequences through dynamic equilibrium among multiple bound states, The EMBO Journal, vol.5, issue.22, pp.4777-4787, 2007.
DOI : 10.1038/sj.emboj.7601888

URL : http://emboj.embopress.org/content/26/22/4777.full.pdf

S. Bhushan, C. Kuhn, A. K. Berglund, C. Roth, and E. Glaser, The role of the N-terminal domain of chloroplast targeting peptides in organellar protein import and miss-sorting, FEBS Letters, vol.4, issue.16, pp.3966-3972, 2006.
DOI : 10.1038/sj.embor.7400011

G. Schneider, S. Sjöling, E. Wallin, P. Wrede, E. Glaser et al., Feature-extraction from endopeptidase cleavage sites in mitochondrial targeting peptides, Proteins: Structure, Function, and Genetics, vol.27, issue.1, pp.49-60, 1998.
DOI : 10.1128/MCB.9.3.1014

M. Tanudji, S. Sjöling, E. Glaser, and J. Whelan, Signals Required for the Import and Processing of the Alternative Oxidase into Mitochondria, Journal of Biological Chemistry, vol.269, issue.3, pp.1286-1293, 1999.
DOI : 10.1104/pp.110.1.277

S. Kitada, E. Yamasaki, K. Kojima, and A. Ito, Determination of the Cleavage Site of the Presequence by Mitochondrial Processing Peptidase on the Substrate Binding Scaffold and the Multiple Subsites inside a Molecular Cavity, Journal of Biological Chemistry, vol.269, issue.3, pp.1879-1885, 2003.
DOI : 10.1016/S0006-291X(67)80055-X

X. P. Zhang, S. Sjöling, M. Tanudji, L. Somogyi, D. Andreu et al., Mutagenesis and computer modelling approach to study determinants for recognition of signal peptides by the mitochondrial processing peptidase, The Plant Journal, vol.288, issue.5, pp.427-438, 2001.
DOI : 10.1006/jmbi.1999.2669

C. Staiger, A. Hinneburg, and R. B. Klösgen, Diversity in Degrees of Freedom of Mitochondrial Transit Peptides, Molecular Biology and Evolution, vol.22, issue.22, pp.1773-1780, 2009.
DOI : 10.1093/nar/22.22.4673

A. H. Millar, J. L. Heazlewood, B. K. Kristensen, H. P. Braun, and I. M. Møller, The plant mitochondrial proteome, Trends in Plant Science, vol.10, issue.1, pp.36-43, 2005.
DOI : 10.1016/j.tplants.2004.12.002

A. Candat, G. Paszkiewicz, M. Neveu, R. Gautier, D. C. Logan et al., Offers Tailored Protection against Abiotic Stress, The Plant Cell, vol.26, issue.7, pp.3148-3166, 2014.
DOI : 10.1105/tpc.114.127316

URL : https://hal.archives-ouvertes.fr/hal-01209997

A. Tunnacliffe, D. K. Hincha, O. Leprince, and D. Macherel, LEA proteins: Versatility of form and function. In Sleeping Beauties?Dormancy and Resistance in Harsh Environments, 2010.
DOI : 10.1007/978-3-642-12422-8_6

URL : https://hal.archives-ouvertes.fr/hal-00729697

D. Tolleter, M. Jaquinod, C. Mangavel, C. Passirani, P. Saulnier et al.,

M. H. Avelange-macherel and D. Macherel, Structure and function of a mitochondrial late embryogenesis abundant protein are revealed by desiccation, Plant Cell, vol.19, pp.1580-1589, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00146361

D. Tolleter, D. K. Hincha, and D. Macherel, A mitochondrial late embryogenesis abundant protein stabilizes model membranes in the dry state, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1798, issue.10, pp.1926-1933, 1798.
DOI : 10.1016/j.bbamem.2010.06.029

M. Avelange-macherel, N. Payet, D. Lalanne, M. Neveu, D. Tolleter et al., Variability within a pea core collection of LEAM and HSP22, two mitochondrial seed proteins involved in stress tolerance, Plant, Cell & Environment, vol.5, issue.7, pp.1299-1311, 2015.
DOI : 10.1371/journal.pgen.1000581

URL : https://hal.archives-ouvertes.fr/hal-01392646

L. M. Weaver, S. Gan, B. Quirino, and R. M. Amasino, A comparison of the expression patterns of several senescence-associated genes in response to stress and hormone treatment, Plant Molecular Biology, vol.37, issue.3, pp.455-469, 1998.
DOI : 10.1023/A:1005934428906

S. B. Mowla, A. Cuypers, S. P. Driscoll, G. Kiddle, J. Thomson et al., late embryogenesis abundant (LEA)-like protein in oxidative stress tolerance, The Plant Journal, vol.136, issue.Suppl., pp.743-756, 2006.
DOI : 10.1093/oxfordjournals.jbchem.a022648

F. M. Salleh, K. Evans, B. Goodall, H. Machin, S. B. Mowla et al., A novel function for a redox-related LEA protein (SAG21/AtLEA5) in root development and biotic stress responses, Plant, Cell & Environment, vol.29, issue.2, pp.418-429, 2012.
DOI : 10.1111/j.1365-3040.2005.01459.x

A. Fournier-level, A. Korte, M. D. Cooper, M. Nordborg, J. Schmitt et al., A Map of Local Adaptation in Arabidopsis thaliana, Science, vol.140, issue.5, pp.86-89, 2011.
DOI : 10.1016/S0176-1617(11)81027-8

Y. Abe, T. Shodai, T. Muto, K. Mihara, H. Torii et al., Structural Basis of Presequence Recognition by the Mitochondrial Protein Import Receptor Tom20, Cell, vol.100, issue.5, pp.551-560, 2000.
DOI : 10.1016/S0092-8674(00)80691-1

G. Duby, M. Oufattole, and M. Boutry, Hydrophobic residues within the predicted N-terminal amphiphilic ??-helix of a plant mitochondrial targeting presequence play a major role in in vivo import, The Plant Journal, vol.258, issue.6, pp.539-549, 2001.
DOI : 10.1016/S0168-9452(99)00155-7

H. Y. Liu, P. C. Liao, K. T. Chuang, and M. C. Kao, Mitochondrial targeting of human NADH dehydrogenase (ubiquinone) flavoprotein 2 (NDUFV2) and its association with early-onset hypertrophic cardiomyopathy and encephalopathy, Journal of Biomedical Science, vol.18, issue.1, p.29, 2011.
DOI : 10.1186/1423-0127-18-29

S. Huang, C. J. Nelson, L. Li, N. L. Taylor, E. Ströher et al., INTERMEDIATE CLEAVAGE PEPTIDASE55 Modifies Enzyme Amino Termini and Alters Protein Stability in Arabidopsis Mitochondria, Plant Physiology, vol.168, issue.2, pp.415-427, 2015.
DOI : 10.1104/pp.15.00300

F. Rodríguez-trelles, R. Tarrío, and F. J. Ayala, Origins and Evolution of Spliceosomal Introns, Annual Review of Genetics, vol.40, issue.1, pp.47-76, 2006.
DOI : 10.1146/annurev.genet.40.110405.090625

N. Panchy, M. D. Lehti-shiu, and S. Shiu, Evolution of gene duplication in plants, Plant Physiology, vol.171, pp.2294-2316, 2016.
DOI : 10.1104/pp.16.00523

W. Qian and J. Zhang, Protein Subcellular Relocalization in the Evolution of Yeast Singleton and Duplicate Genes, Genome Biology and Evolution, vol.18, issue.3
DOI : 10.1002/prot.21018

, Genome Biol. Evol, vol.1, pp.198-204, 2009.

X. Wang, Y. Huang, D. V. Lavrov, and X. Gu, Comparative study of human mitochondrial proteome reveals extensive protein subcellular relocalization after gene duplications, BMC Evolutionary Biology, vol.9, issue.1, p.275, 2009.
DOI : 10.1186/1471-2148-9-275

URL : https://bmcevolbiol.biomedcentral.com/track/pdf/10.1186/1471-2148-9-275?site=bmcevolbiol.biomedcentral.com

S. Liu, A. Q. Pan, and K. L. Adams,

, Genome Biol. Evol. 2014, vol.6, pp.2501-2515

A. Candat, P. Poupart, J. Andrieu, A. Chevrollier, P. Reynier et al., Experimental determination of organelle targeting-peptide cleavage sites using transient expression of green fluorescent protein translational fusions, Analytical Biochemistry, vol.434, issue.1, pp.44-51, 2013.
DOI : 10.1016/j.ab.2012.10.040

X. Huang and W. Miller, A time-efficient, linear-space local similarity algorithm, Advances in Applied Mathematics, vol.12, issue.3, pp.337-357, 1991.
DOI : 10.1016/0196-8858(91)90017-D

F. Sievers, A. Wilm, D. Dineen, T. J. Gibson, K. Karplus et al., Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega, Molecular Systems Biology, vol.7, issue.1, p.7, 2011.
DOI : 10.1093/nar/gkn174

W. Li, A. Cowley, M. Uludag, T. Gur, H. Mcwilliam et al., The EMBL-EBI bioinformatics web and programmatic tools framework, Nucleic Acids Research, vol.48, issue.W1, pp.580-584, 2015.
DOI : 10.1093/nar/gkg573

S. F. Altschul, T. L. Madden, A. A. Schäffer, J. Zhang, Z. Zhang et al., Gapped BLAST and PSI-BLAST: a new generation of protein database search programs, Nucleic Acids Research, vol.25, issue.17, pp.3389-3402, 1997.
DOI : 10.1093/nar/25.17.3389

R. D. Finn, J. Clements, W. Arndt, B. L. Miller, T. J. Wheeler et al., HMMER web server: 2015 update, Nucleic Acids Research, vol.43, issue.W1, pp.30-38, 2015.
DOI : 10.1093/nar/gkt1180

K. Nakai and P. Horton, PSORT: a program for detecting sorting signals in proteins and predicting their subcellular localization, Trends in Biochemical Sciences, vol.24, issue.1, pp.34-36, 1999.
DOI : 10.1016/S0968-0004(98)01336-X

M. G. Claros and P. Vincens, Computational Method to Predict Mitochondrially Imported Proteins and their Targeting Sequences, European Journal of Biochemistry, vol.30, issue.3, pp.779-786, 1996.
DOI : 10.1016/0014-5793(94)00404-8

O. Emanuelsson, H. Nielsen, S. Brunak, and G. Von-heijne, Predicting Subcellular Localization of Proteins Based on their N-terminal Amino Acid Sequence, Journal of Molecular Biology, vol.300, issue.4, pp.1005-1016, 2000.
DOI : 10.1006/jmbi.2000.3903

I. Small, N. Peeters, F. Legeai, and C. Lurin, Predotar: A tool for rapidly screening proteomes forN-terminal targeting sequences, PROTEOMICS, vol.4, issue.6, pp.1581-1590, 2004.
DOI : 10.1002/pmic.200300776

M. Bodén and J. Hawkins, Prediction of subcellular localization using sequence-biased recurrent networks, Bioinformatics, vol.253, issue.2, pp.2279-2286, 2005.
DOI : 10.1016/S0378-1119(00)00233-X

Y. Fukasawa, J. Tsuji, S. C. Fu, K. Tomii, P. Horton et al., MitoFates: Improved Prediction of Mitochondrial Targeting Sequences and Their Cleavage Sites, Molecular & Cellular Proteomics, vol.57, issue.4, pp.1113-1126
DOI : 10.1172/JCI40076

B. D. Halligan, V. Ruotti, W. Jin, S. Laffoon, S. N. Twigger et al., ProMoST (Protein Modification Screening Tool): a web-based tool for mapping protein modifications on two-dimensional gels, Nucleic Acids Research, vol.32, issue.Web Server, pp.638-644, 2004.
DOI : 10.1093/nar/gkh356

A. Drozdetskiy, C. Cole, J. Procter, and G. J. Barton, JPred4: a protein secondary structure prediction server, Nucleic Acids Research, vol.18, issue.Suppl. 1, pp.389-394, 2015.
DOI : 10.1093/bioinformatics/btp033

R. Gautier, D. Douguet, B. Antonny, and G. Drin, HELIQUEST: a web server to screen sequences with specific ??-helical properties, Bioinformatics, vol.7, issue.2, pp.2101-2102, 2008.
DOI : 10.1186/1471-2105-7-255

URL : https://hal.archives-ouvertes.fr/hal-00311956