W. J. Baars, N. Hutchins, and I. Marusic, Spectral stochastic estimation of high-Reynolds-number wall-bounded turbulence for a refined inner-outer interaction model, Phys Rev Fluids, vol.1, issue.5, p.54406, 2016.

L. H. Benedict, H. Nobach, and C. Tropea, Estimation of turbulent velocity spectra from laser Doppler data, Meas Sci Technol, vol.11, issue.8, p.1089, 2000.

K. Blackman and L. Perret, Non-linear interactions in a boundary layer developing over an array of cubes using stochastic estimation, Phys Fluids, vol.28, issue.9, p.95108, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01404713

K. Blackman, L. Perret, I. Calmet, and C. Rivet, Turbulent kinetic energy budget in the boundary layer developing over an urbanlike rough wall using PIV, Phys Fluids, vol.29, issue.8, p.85, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01634889

I. P. Castro and A. Robins, The flow around a surface-mounted cube in uniform and turbulent streams, J Fluid Mech, vol.79, pp.307-335, 1977.

I. P. Castro, H. Cheng, and R. Reynolds, Turbulence over urban-type roughness: deductions from wind-tunnel measurements, Bound Layer Meteorol, vol.118, issue.1, pp.109-131, 2006.

H. Cheng and I. P. Castro, Near wall flow over urban-like roughness, Bound Layer Meteorol, vol.104, issue.2, pp.229-259, 2002.
DOI : 10.1023/a:1016060103448

O. Coceal and S. E. Belcher, Mean winds through an inhomogeneous urban canopy, Bound Layer Meteorol, vol.115, issue.1, pp.47-68, 2005.
DOI : 10.1007/s10546-004-1591-4

O. Coceal, T. G. Thomas, I. P. Castro, and S. E. Belcher, Mean flow and turbulence statistics over groups of urban-like cubical obstacles, Bound Layer Meteorol, vol.121, issue.3, pp.6-006, 2006.
DOI : 10.1007/s10546-006-9076-2

O. Coceal, A. Dobre, T. G. Thomas, and S. E. Belcher, Structure of turbulent flow over regular arrays of cubical roughness, J Fluid Mech, 2007.

J. Finnigan, Turbulence in plant canopies, Ann Rev Fluid Mech, vol.32, pp.519-571, 2000.

C. Grimmond and T. R. Oke, Aerodynamics properties of urban area derived from analysis of surface form, J Appl Meteorol, vol.38, pp.1262-1292, 1999.

A. Inagaki and M. Kanda, Turbulent flow similarity over an array of cubes in near-neutrally stratified atmospheric flow, J Fluid Mech, vol.615, p.101, 2008.

P. S. Jackson, On the displacement height in the logarithmic velocity profile, J Fluid Mech, vol.111, pp.15-25, 1981.

J. Kaimal, J. Wyngaard, Y. Izumi, and O. Cote, Spectral characteristics of surface-layer turbulence, Q J R Met Soc, vol.98, pp.563-589, 1972.

R. Macdonald, S. Carter, and P. Slawson, Measurements of mean velocity and turbulence statistics in simple obstacle arrays at 1:200 scale, Therm Fluid Rep, 2000.

R. Martinuzzi and C. Tropea, The flow around surface-mounted, prismatic obstacles placed in a fully developed channel flow (data bank contribution), J Fluids Eng, vol.115, issue.1, pp.85-92, 1993.

R. J. Martinuzzi and B. Havel, Vortex shedding from two surfacemounted cubes in tandem, Int J Heat Fluid Flow, vol.25, issue.3, pp.364-372, 2004.
DOI : 10.1016/j.ijheatfluidflow.2004.02.003

I. Marusic, R. Mathis, and N. Hutchins, Predictive model for wallbounded turbulent flow, Science, vol.329, pp.193-196, 2010.
DOI : 10.1126/science.1188765

R. Mathis, N. Hutchins, and I. Marusic, Large-scale amplitude modulation of the small-scale structures in turbulent boundary layers, J Fluid Mech, vol.628, p.311, 2009.

B. Mckeon, G. Comte-bellot, J. Foss, J. Westerweel, F. Scarano et al., Handbook on experimental fluid mechanics: chapter 5: velocity, vorticity, and Mach number, Springer handbook of experimental fluid mechanics, pp.215-471, 2007.

E. Meinders and K. Hanjalic, Vortex structure and heat transfer in turbulent flow over a wall-mounted matrix of cubes, Int J Heat Fluid Flow, vol.20, pp.255-267, 1999.

H. Nobach, A time-quantization based estimator for autocorrelation and spectral density estimation from laser Doppler anemometry data including local normalization, 2016.

H. Nobach, E. Müller, and C. Tropea, Efficient estimation of power spectral density from laser Doppler anemometer data, Exp Fluids, vol.24, issue.5, pp.499-509, 1998.
DOI : 10.1007/s003480050199

T. R. Oke, Street design and urban canopy layer climate, Energy Build, vol.11, pp.90026-90032, 1988.
DOI : 10.1016/0378-7788(88)90026-6

L. Perret, T. Piquet, J. Basley, and R. Mathis, Effects of plan area densities of cubical roughness elements on turbulent boundary layers, Congrès Français de Mécanique, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01634939

R. T. Reynolds and I. P. Castro, Measurements in an urban-type boundary layer, Exp Fluids, vol.45, issue.1, pp.141-156, 2008.

C. Rivet, Etude en soufflerie atmosphérique des interactions entre canopée urbaine et basse atmosphère par PIV stéréoscopique, 2014.

H. Sakamoto and H. Haniu, Aerodynamic forces acting on two square prisms placed vertically in a turbulent boundary layer, J Wind Eng Ind Aerodyn, vol.31, issue.1, pp.41-66, 1988.

E. Savory, L. Perret, and C. Rivet, Modeling considerations for examining the mean and unsteady flow in a simple urban-type street canyon, Meteorol Atmos Phys, vol.121, pp.1-16, 2013.

D. T. Squire, C. Morrill-winter, N. Hutchins, M. P. Schultz, J. C. Klewicki et al., Comparison of turbulent boundary layers over smooth and rough surfaces up to high Reynolds numbers, J Fluid Mech, vol.795, pp.210-240, 2016.

H. Van-maanen, H. Nobach, and B. Lv, Improved estimator for the slotted autocorrelation function of randomly sampled LDA data, Meas Sci Technol, vol.10, issue.1, p.4, 1999.