G. Wang, A study on the history of Chinese roses from ancient works and images, Acta Hortic, vol.751, pp.347-356, 2007.

S. Pliny-;-schmit, Pine L'Ancience: Histoire naturelle, 2013.

H. Nybom and G. Werlemark, Realizing the potential of health-promoting rosehips from dogroses (Rosa sect. Caninae), Curr. Bioact. Compd, vol.13, pp.3-17, 2017.

J. Zhang, The diploid origins of allopolyploid rose species studied using single nucleotide polymorphism haplotypes flanking a microsatellite repeat, J. Hortic. Sci. Biotechnol, vol.88, pp.85-92, 2013.

C. M. Ritz and V. Wisseman, Microsatellite analyses of artificial and spontaneous dogroses hybrids reveal the hybridogenic origin of Rosa micrantha by the contribution of unreduced gametes, J. Hered, vol.102, pp.2117-2127, 2011.

J. Meng, M. Fougère-danezan, L. Zhang, D. Li, and T. Yi, Untangling the hybrid origin of the Chinese tea roses: evidence from DNA sequences of single-copy nuclear and chloroplast genes, Plant Syst. Evol, vol.297, pp.157-170, 2011.

V. Wisseman and C. M. Ritz, The genus Rosa (Rosoideae, Rosaceae) revisited: molecular analysis of nrITS-1 and atpB-rbcL intergenic spacer (IGS) versus conventional taxonomy, Bot. J. Linna. Soc, vol.147, pp.275-290, 2005.

H. Jian, Decaploidy in Rosa praelucens Byhouwer (Rosaceae) endemic to Zhongdian Plateau, Caryologia, vol.63, pp.162-167, 2012.

A. V. Robert, T. Gladis, and H. Brumme, DNA amounts of roses (Rosa L.) and their use in attributing ploidy levels, Plant Cell Rep, vol.28, pp.61-71, 2009.

P. M. Bourke, Partial preferential chromosome pairing is genotype dependent in tetraploid rose, Plant J, vol.90, pp.330-343, 2017.

V. Herklotz and C. M. Ritz, Multiple and asymmetrical origin of polyploid dog rose hybrids (Rosa L. sect. Caninae (DC.) Ser.) involving unreduced gametes, Ann. Bot, vol.120, pp.209-220, 2017.

C. M. Ritz, I. Köhnen, M. Groth, G. Theissen, and V. Wisseman, To be or not to be the odd one out-allele-specific transcription in pentaploid dogroses (Rosa L. sect, Caninae (DC.) Ser). BMC Plant Biol, vol.11, p.37, 2011.

M. Liorzou, Nineteenth century French rose (Rosa sp.) germplasm shows a shift over time from a European to an Asian genetic background, J. Exp. Bot, vol.67, pp.4711-4725, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01399109

N. Nakamura, Genome structure of Rosa multiflora, a wild ancestor of cultivated roses, DNA Res, vol.25, pp.113-121, 2018.

A. P. Wylie, The history of garden roses, J. R. Hortic. Soc, vol.79, pp.555-571, 1954.

S. Koren, Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation, Genome Res, vol.27, pp.722-736, 2017.

C. F. Koning-boucoiran, Using RNA-seq to assemble a rose transcriptome with more than 13,000 full-length expressed genes and to develop the WagRhSNP 68k Axiom SNP array for rose

, Front. Plant Sci, vol.6, p.249, 2015.

S. Foissac, Genome annotation in plants and fungi: EuGene as a model platform, Curr. Bioinform, vol.3, pp.87-97, 2008.

P. Jones, InterProScan 5: genome-scale protein function classification, Bioinformatics, vol.30, pp.1236-1240, 2014.

R. D. Finn, The Pfam protein families database: towards a more sustainable future, Nucleic Acids Res, vol.44, pp.279-285, 2016.
DOI : 10.1093/nar/gkv1344

URL : https://hal.archives-ouvertes.fr/hal-01294685

F. A. Simao, R. M. Waterhouse, P. Ioannidis, E. V. Kriventseva, and E. M. Zdobnov, BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs, Bioinformatics, vol.31, pp.3210-3212, 2015.

P. P. Edger, Single-molecule sequencing and optical mapping yields an improved genome of woodland strawberry (Fragaria vesca) with chromosome-scale contiguity, GigaScience, vol.7, pp.1-7, 2018.
DOI : 10.1093/gigascience/gix124

URL : https://academic.oup.com/gigascience/article-pdf/7/2/1/23843321/gix124.pdf

T. Flutre, E. Duprat, C. Feuillet, and H. Quesneville, Considering transposable element diversification in de novo annotation approaches, PLoS ONE, vol.6, p.16526, 2011.
DOI : 10.1371/journal.pone.0016526

URL : https://hal.archives-ouvertes.fr/hal-00568705

D. Potter, Phylogeny and classification of Rosaceae, Plant Syst. Evol, vol.266, pp.5-43, 2007.
DOI : 10.1007/s00606-007-0539-9

Y. Xiang, Evolution of Rosaceae fruit types based on nuclear phylogeny in the context of geological times and genome duplication, Mol. Biol. Evol, vol.34, pp.262-281, 2017.

O. Gar, An autotetraploid linkage map of rose (Rosa hybrida) validated using the strawberry (Fragaria vesca) genome sequence, PLoS ONE, vol.6, p.20463, 2011.
DOI : 10.1371/journal.pone.0020463

URL : https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0020463&type=printable

A. Bruneau, J. R. Starr, and S. Joly, Phylogenetic relationships in the genus Rosa: new evidence from chloroplast DNA sequences and an appraisal of current knowledge, Syst. Bot, vol.32, pp.366-378, 2007.

M. Fougère-danezan, S. Joly, A. Bruneau, X. Gao, and L. Zhang, Phylogeny and biogeography of wild roses with specific attention to polyploids, Ann. Bot, vol.115, pp.275-291, 2015.

M. D. Fernández-romero, A. M. Torres, T. Millán, J. I. Cubero, and A. Cabrera, Physical mapping of ribosomal DNA on several species of the subgenus Rosa, Theor. Appl. Genet, vol.103, pp.835-838, 2001.

, The 100 Tomato Genome Sequencing Consortium et al. Exploring genetic variation in the tomato (Solanum section Lycopersicon) clade by wholegenome sequencing, Plant J, vol.80, pp.136-148, 2014.

N. Duan, Genome re-sequencing reveals the history of apple and supports a two-stage model for fruit enlargement, Nat. Commun, vol.8, p.249, 2017.

T. H. Nguyen, D. Schulz, T. Winkelmann, and T. Debener, Genetic dissection of adventitious shoot regeneration in roses by employing genome-wide association studies, Plant Cell Rep, vol.36, pp.1493-1505, 2017.

D. F. Schulz, Genome-wide association analysis of the anthocyanin and carotenoid contents of rose petals, Front. Plant Sci, vol.7, p.1798, 2016.

H. Iwata, The TFL1 homologue KSN is a regulator of continuous flowering in rose and strawberry, Plant J, vol.69, pp.116-125, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01209893

E. A. Koskela, Mutation in TERMINAL FLOWER1 reverses the photoperiodic requirement for flowering in the wild strawberry Fragaria vesca, Plant Physiol, vol.159, pp.1043-1054, 2012.

V. Shulaev, The genome of woodland strawberry (Fragaria vesca)

, Nat. Genet, vol.43, pp.109-116, 2010.

A. Dubois, Tinkering with the C-function: a molecular frame for the selection of double flowers in cultivated roses, PLoS ONE, vol.5, p.9288, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00521642

H. Roman, Genetic analysis of the flowering date and number of petals in rose, Tree Genet. Genomes, vol.11, p.85, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01392106

M. Shigyo, M. Hasebe, and M. Ito, Molecular evolution of the AP2 subfamily, Gene, vol.366, pp.256-265, 2006.

J. L. Bowman, J. Alvarez, D. Weigel, E. M. Meyerowitz, and D. R. Smyth, Control of flower development in Arabidopsis thaliana by APETALA1 and interacting genes, Development, vol.119, pp.721-743, 1993.

J. L. Bowman, D. R. Smyth, and E. M. Meyerowitz, Genes directing flower development in Arabidopsis, Plant Cell, vol.1, pp.37-52, 1989.

J. Jung, S. Lee, J. Yun, M. Lee, and C. Park, The miR172 target TOE3 represses AGAMOUS expression during Arabidopsis floral patterning, Plant Sci, pp.29-38, 2014.

B. Zhang, L. Wang, L. Zeng, C. Zhang, and H. Ma, Arabidopsis TOE proteins convey a photoperiodic signal to antagonize CONSTANS and regulate flowering time, Genes Dev, vol.29, pp.975-987, 2015.

J. L. Bowman, D. R. Smyth, and E. M. Meyerowitz, Genetic interactions among floral homeotic genes of Arabidopsis, Development, vol.112, pp.1-20, 1991.

Ó. 'maoiléidigh, D. S. Graciet, E. Wellmer, and F. , Gene networks controlling Arabidopsis thaliana flower development, New Phytol, vol.201, pp.16-30, 2014.

J. Ashkani and D. J. Rees, A comprehensive study of molecular evolution at the self-incompatibility locus of Rosaceae, J. Mol. Evol, vol.82, pp.128-145, 2016.

D. Charlesworth, X. Vekemans, V. Castric, and S. Glemin, Plant selfincompatibility systems: a molecular evolutionary perspective, New Phytol, vol.168, pp.61-69, 2005.

B. Mcclure, F. Cruz-garcía, and C. Romero, Compatibility and incompatibility in S-RNase-based systems, Ann. Bot, vol.108, pp.647-658, 2011.

T. Debener, Genetic and molecular analysis of key loci involved in self incompatibility and floral scent in roses, Acta Hortic, vol.870, pp.183-190, 2010.

J. I. Mena-ali and A. G. Stephenson, Segregation analyses of partial selfincompatibility in self and cross progeny of Solanum carolinense reveal a leaky S-allele, Genetics, vol.177, pp.501-510, 2007.

A. A. Kellogg, T. J. Branaman, N. M. Jones, C. Z. Little, and J. D. Swanson, Morphological studies of developing Rubus prickles suggest that they are modified glandular trichomes, Botany, vol.89, pp.217-226, 2011.

S. Pattanaik, B. Patra, S. K. Singh, and L. Yuan, An overview of the gene regulatory network controlling trichome development in the model plant, Arabidopsis. Front. Plant Sci, vol.5, p.259, 2014.

C. S. Johnson, B. Kolevski, and D. R. Smyth, TRANSPARENT TESTA GLABRA2, a trichome and seed coat development gene of Arabidopsis, encodes a WRKY transcription factor, Plant Cell, vol.14, pp.1359-1375, 2002.

J. Magnard, Biosynthesis of monoterpene scent compounds in roses, Science, vol.349, pp.81-83, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01397122

C. F. Koning-boucoiran, The mode of inheritance in tetraploid cut roses, Theor. Appl. Genet, vol.125, pp.591-607, 2012.

M. Kyo and H. Harada, Control of the developmental pathway of tobacco pollen in vitro, Planta, vol.168, pp.427-432, 1986.

H. Oyant, L. Crespel, L. Rajapakse, S. Zhang, L. Foucher et al., Genetic linkage maps of rose constructed with new microsatellite markers and locating QTL controlling flowering traits, Tree Genet. Genomes, vol.4, pp.11-23, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00729863

N. Daccord, High-quality de novo assembly of the apple genome and methylome dynamics of early fruit development, Nat. Genet, vol.49, pp.1099-1106, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01602554

H. Li, Toward better understanding of artifacts in variant calling from high-coverage samples, Bioinformatics, vol.30, pp.2843-2851, 2014.

B. J. Walker, Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement, PLoS ONE, vol.9, p.112963, 2014.

H. Noguchi, T. Taniguchi, and T. Itoh, MetaGeneAnnotator: detecting species-specific patterns of ribosomal binding site for precise gene prediction in anonymous prokaryotic and phage genomes, DNA Res, vol.15, pp.387-396, 2008.

H. Li, Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv 1303, p.3997, 2013.

H. Hosseini-moghaddam, L. Leus, J. De-riek, J. Van-huylenbroeck, and E. Van-bockstaele, Construction of a genetic linkage map with SSR, AFLP and morphological markers to locate QTLs controlling pathotypespecific powdery mildew resistance in diploid roses, Euphytica, vol.184, pp.413-427, 2012.

V. W. Gitonga, Inheritance and QTL analysis of the determinants of flower color in tetraploid cut roses, Mol. Breed, vol.36, p.143, 2016.

Z. Yan, O. Dolstra, T. W. Prins, P. Stam, and P. B. Visser, Assessment of partial resistance to powdery mildew (Podosphaera pannosa) in a tetraploid rose population using a spore-suspension inoculation method, Eur. J. Plant Pathol, vol.114, pp.301-308, 2006.

P. J. Bradbury, TASSEL: software for association mapping of complex traits in diverse samples, Bioinformatics, vol.23, pp.2633-2635, 2007.

W. J. Kent, BLAT-the BLAST-like alignment tool, Genome Res, vol.12, pp.656-664, 2002.

G. Benson, Tandem repeats finder: a program to analyze DNA sequences, Nucleic Acids Res, vol.27, pp.573-580, 1999.

P. Novák, TAREAN: a computational tool for identification and characterization of satellite DNA from unassembled short reads, Nucleic Acids Res, vol.45, p.111, 2017.

P. Novak, P. Neumann, J. Pech, J. Steinhaisl, and J. Macas, RepeatExplorer: a Galaxy-based web server for genome-wide characterization of eukaryotic repetitive elements from next-generation sequence reads, Bioinformatics, vol.29, pp.792-793, 2013.

B. Langmead and S. L. Salzberg, Fast gapped-read alignment with Bowtie 2, Nat. Methods, vol.9, pp.357-359, 2012.

Z. Gu, L. Gu, R. Eils, M. Schlesner, and B. Brors, Circlize implements and enhances circular visualization in R, Bioinformatics, vol.30, pp.2811-2812, 2014.

R. C. Gentleman, Bioconductor: open software development for computational biology and bioinformatics, Genome Biol, vol.5, p.80, 2004.

I. Kirov, M. Divashuk, K. Van-laere, A. Soloviev, and L. Khrustaleva, An easy "SteamDrop" method for high quality plant chromosome preparation, Mol. Cytogenet, vol.7, p.21, 2014.

I. V. Kirov, K. Van-laere, N. Van-roy, and L. I. Khrustaleva, Towards a FISH-based karyotype of Rosa L. (Rosaceae), Comp. Cytogenet, vol.10, pp.543-554, 2016.

I. V. Kirov, DRAWID: user-friendly java software for chromosome measurements and idiogram drawing, Comp. Cytogenet, vol.11, pp.747-757, 2017.

H. Li and R. Durbin, Fast and accurate short read alignment with BurrowsWheeler transform, Bioinformatics, vol.25, pp.1754-1760, 2009.

H. Li, A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data, Bioinformatics, vol.27, pp.2987-2993, 2011.

A. Mckenna, The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data, Genome Res, vol.20, pp.1297-1303, 2010.

P. Cingolani, Using Drosophila melanogaster as a model for genotoxic chemical mutational studies with a new program, SnpSift. Front. Genet, vol.3, p.35, 2012.
DOI : 10.3389/fgene.2012.00035

URL : https://www.frontiersin.org/articles/10.3389/fgene.2012.00035/pdf

P. Cingolani, A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w(1118); iso-2; iso-3, Fly, vol.6, pp.80-92, 2012.

A. Stamatakis, RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies, Bioinformatics, vol.30, pp.1312-1313, 2014.

P. O. Lewis, A likelihood approach to estimating phylogeny from discrete morphological character data, Syst. Biol, vol.50, pp.913-925, 2001.
DOI : 10.1080/106351501753462876

URL : https://academic.oup.com/sysbio/article-pdf/50/6/913/19502729/50-6-913.pdf

B. C. Du-mortier, Notice sur un Nouveau Genre de Plantes: Hulthemia

, Précédée d'un Aperçu sur la Classification des Roses (Casterman, J, 1824.

E. Lyons, Finding and comparing syntenic regions among Arabidopsis and the outgroups papaya, poplar, and grape: CoGe with rosids, Plant Physiol, vol.148, pp.1772-1781, 2008.

Y. Wang, MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity, Nucleic Acids Res, vol.40, p.49, 2012.

M. Krzywinski, Circos: an information aesthetic for comparative genomics, Genome Res, vol.19, pp.1639-1645, 2009.

A. Bankevich, SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing, J. Comput. Biol, vol.19, pp.455-477, 2012.

M. Randoux, Gibberellins regulate the transcription of the continuous flowering regulator, RoKSN, a rose TFL1 homologue, J. Exp. Bot, vol.63, pp.6543-6554, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00841831

S. Jung, The Genome Database for Rosaceae (GDR): year 10 update, Nucleic Acids Res, vol.42, pp.1237-1244, 2014.

, These sample size (more than 150 individuals) is sufficiant for QTL and major gene detection. Combination of the different progenies allows the delimitation of a small region for cloning the double flower locus. The panel diversity size is 96 individuals

, Data exclusions For the OW progeny, one individual was excluded for the genetic map construction (too many missing data) Replication The replications were done for scoring morphological traits in the F1 progenies and diversity panel: For double flower: described p24 in M&M (for F1 progenies: more than 5 flowers per plants, for GWAS, 3 flowers per plants on 3 clones) For prickle density: on 3 independent shoots (p24 in M&M) For continuous flowering: the scoring was done during 3 years. Replication for qPCR experiments: For each experiment 3 technical and 2

, Randomization For the diversity panel, the plant were cultivated in a randomised block design with 3 blocks comprising one clone (M&M p19) Blinding The data (scoring of morphological traits) were directly collected in the field or in the greenhouse with no blinding. The blinding is not relevant as the genetic analysis is performed after the scoring; therefore the scoring cannot be influenced by expected results

, The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers)

, All plots are contour plots with outliers or pseudocolor plots. A numerical value for number of cells or percentage

, Callus developed from somatic embryos obtained from anthers was analyzed. The Cystain® absolute PI reagent kit (Sysmex, Germany) was used for sample preparation according to the manufacturer's protocol. The plant material is chopped using a nature research | reporting summary, 2018.

, Leaf material of Solanum lycopersicum 'Stupické polni tyckove rane' was used as an internal standard, with known genome size, and co-chopped with the rose callus. Instrument PASIII-equipped with 488 nm 20 mW solid state laser-supplier: Partec (currently Sysmex, The kit uses Propidium Iodide as a fluorochrome

, Software Flomax 2.9-supplier, Quantum Analysis

, Three repetitions were performed on different days. Gating strategy No gating was applied. The analysis of the plant genome size results in a non, Mbp/2C), 1916.

, Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information