J. R. Wolch, J. Byrne, and J. P. Newell, Urban green space, public health, and environmental justice: The challenge of making cities 'just green enough, Landsc. Urban Plan, vol.125, pp.234-244, 2014.

X. Li, C. Zhang, W. Li, R. Ricard, Q. Meng et al., Assessing street-level urban greenery using Google Street View and a modified green view index. Urban For. Urban Green, vol.14, pp.675-685, 2015.
DOI : 10.1016/j.ufug.2015.06.006

M. Carpenter, From 'healthful exercise' to 'nature on prescription': The politics of urban green spaces and walking for health, Landsc. Urban Plan, vol.118, pp.120-127, 2013.

G. Coppel and H. Wüstemann, Empirical findings and implications for urban planning, Landsc. Urban Plan, vol.167, pp.410-418, 2017.

E. D. Ekkel and S. De-vries, Nearby green space and human health: Evaluating accessibility metrics, vol.157, pp.214-220, 2017.
DOI : 10.1016/j.landurbplan.2016.06.008

T. Sugiyama, A. Carver, M. J. Koohsari, and J. Veitch, Advantages of public green spaces in enhancing population health, Landsc. Urban Plan, vol.178, pp.12-17, 2018.

A. Russo and G. Cirella, Modern compact cities: How much greenery do we need?, Int. J. Environ. Res. Public Health, vol.15, 2018.
DOI : 10.3390/ijerph15102180

URL : https://www.mdpi.com/1660-4601/15/10/2180/pdf

M. J. Du-toit, S. S. Cilliers, M. Dallimer, M. Goddard, S. Guenat et al., Urban green infrastructure and ecosystem services in sub-Saharan Africa, Landsc. Urban Plan, 2018.

N. J. Zinia and P. Mcshane, Ecosystem services management: An evaluation of green adaptations for urban development in Dhaka, Bangladesh. Landsc. Urban Plan, vol.173, pp.23-32, 2018.

B. Chen, O. A. Adimo, and Z. Bao, Assessment of aesthetic quality and multiple functions of urban green space from the users' perspective: The case of Hangzhou Flower Garden, China. Landsc. Urban Plan, vol.93, pp.76-82, 2009.

P. Salesses, K. Schechtner, and C. A. Hidalgo, The collaborative image of the city: Mapping the inequality of urban perception, PLoS ONE, vol.8, 2013.

L. Liu, E. A. Silva, C. Wu, and H. Wang, A machine learning-based method for the large-scale evaluation of the qualities of the urban environment, Comput. Environ. Urban Syst, vol.65, pp.113-125, 2017.

X. Li, C. Ratti, and I. Seiferling, Quantifying the shade provision of street trees in urban landscape: A case study in Boston, USA, using Google Street View, Landsc. Urban Plan, vol.169, pp.81-91, 2018.

X. Li, C. Zhang, W. Li, and Y. A. Kuzovkina, Environmental inequities in terms of different types of urban greenery in Hartford, Connecticut. Urban For. Urban Green, vol.18, pp.163-172, 2016.

Y. Long and L. Liu, How green are the streets? An analysis for central areas of Chinese cities using Tencent Street View, PLoS ONE, vol.12, 2017.

C. Small, Estimation of urban vegetation abundance by spectral mixture analysis, Int. J. Remote Sens, vol.22, pp.1305-1334, 2001.

E. Antczak, Urban Greenery in the Greatest Polish Cities: Analysis of Spatial Concentration, World Acad. Sci. Eng. Technol. Int. J. Transp. Veh. Eng, vol.11, pp.578-585, 2017.

C. Mccool, J. Beattie, M. Milford, J. D. Bakker, J. L. Moore et al., Automating analysis of vegetation with computer vision: Cover estimates and classification, Ecol. Evol, 2018.

L. Zhaoping and Z. Li, Understanding Vision: Theory, Models, and Data, 2014.

J. H. Elder, J. Victor, and S. W. Zucker, Understanding the statistics of the natural environment and their implications for vision, Vis. Res, vol.120, pp.1-4, 2016.

A. De-cesarei, G. R. Loftus, S. Mastria, and M. Codispoti, Understanding natural scenes: Contributions of image statistics, Neurosci. Biobehav. Rev, vol.74, pp.44-57, 2017.

Y. Chéné, É. Belin, D. Rousseau, and F. Chapeau-blondeau, Multiscale analysis of depth images from natural scenes: Scaling in the depth of the woods, Chaos Solitons Fract, vol.54, pp.135-149, 2013.

W. J. Adams, J. H. Elder, E. W. Graf, J. Leyland, A. J. Lugtigheid et al., The southampton-york natural scenes (syns) dataset: Statistics of surface attitude, Sci. Rep, vol.6, p.35805, 2016.

N. J. Morris, S. Avidan, W. Matusik, and H. Pfister, Statistics of infrared images, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.1-7, 2007.

I. J. Vaughn, A. S. Alenin, and J. S. Tyo, Statistical scene generation for polarimetric imaging systems, 2017.

R. M. Balboa and N. M. Grzywacz, Power spectra and distribution of contrasts of natural images from different habitats, Vis. Res, vol.43, pp.2527-2537, 2003.

E. Rosch, C. B. Mervis, W. D. Gray, D. M. Johnson, and P. Boyes-braem, Basic objects in natural categories, Cognit. Psychol, vol.8, pp.382-439, 1976.

A. Torralba and A. Oliva, Statistics of natural image categories, Netw. Comput. Neural Syst, vol.14, pp.391-412, 2003.

A. Samavatekbatan, S. Gholami, and M. Karimimoshaver, Assessing the visual impact of physical features of tall buildings: Height, top, color, Environ. Impact Assess. Rev, vol.57, pp.53-62, 2016.

M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler et al., The cityscapes dataset for semantic urban scene understanding, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.3213-3223, 2016.

A. M. Reza, Realization of the contrast limited adaptive histogram equalization (CLAHE) for real-time image enhancement, J. VLSI Signal Process, vol.38, pp.35-44, 2004.

D. Lindenmayer and G. Luck, Synthesis: Thresholds in conservation and management, Biol. Conserv, vol.124, pp.351-354, 2005.

L. Fahrig, Effect of habitat fragmentation on the extinction threshold: A synthesis, Ecol. Appl, vol.12, pp.346-353, 2002.

A. J. Huggett, The concept and utility of 'ecological thresholds' in biodiversity conservation, Biol. Conserv, vol.124, pp.301-310, 2005.

F. Chapeau-blondeau, J. Chauveau, D. Rousseau, and P. Richard, Fractal structure in the color distribution of natural images, Chaos Solitons Fract, vol.42, pp.472-482, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00858652

J. Chauveau, D. Rousseau, and F. Chapeau-blondeau, Fractal capacity dimension of three-dimensional histogram from color images, Multidimens. Syst. Signal Process, vol.21, pp.197-211, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00857792

J. Chauveau, D. Rousseau, P. Richard, and F. Chapeau-blondeau, Multifractal analysis of three-dimensional histogram from color images, Chaos Solitons Fract, vol.43, pp.57-67, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00857795

A. Torralba and A. Oliva, Depth estimation from image structure, IEEE Trans. Pattern Anal. Mach. Intell, vol.24, pp.1226-1238, 2002.

R. Szeliski, Computer Vision: Algorithms and Applications, 2010.

D. Ziou and F. Deschenes, Depth from defocus estimation in spatial domain, Comput. Vis. Image Underst, vol.81, pp.143-165, 2001.

G. Rogez, C. Orrite, J. Guerrero, and P. H. Torr, Exploiting projective geometry for view-invariant monocular human motion analysis in man-made environments, Comput. Vis. Image Underst, vol.120, pp.126-140, 2014.

M. E. Portman, A. Natapov, and D. Fisher-gewirtzman, To go where no man has gone before: Virtual reality in architecture, landscape architecture and environmental planning, Comput. Environ. Urban Syst, vol.54, pp.376-384, 2015.
DOI : 10.1016/j.compenvurbsys.2015.05.001

S. F. Kuliga, T. Thrash, R. C. Dalton, and C. Hoelscher, Virtual reality as an empirical research tool-Exploring user experience in a real building and a corresponding virtual model, Comput. Environ. Urban Syst, vol.54, pp.363-375, 2015.
DOI : 10.1016/j.compenvurbsys.2015.09.006

D. Fisher-gewirtzman, M. Portman, A. Natapov, and C. Hölscher, The use of virtual reality for environmental representations, Comput. Environ. Urban Syst, vol.62, pp.97-98, 2017.

I. Stamos, M. Pollefeys, L. Quan, P. Mordohai, and Y. Furukawa, Special Issue on Large-Scale 3D Modeling of Urban Indoor or Outdoor Scenes from Images and Range Scans, Comput. Vis. Image Underst, vol.157, pp.1-2, 2017.
DOI : 10.1016/j.cviu.2017.02.007

H. Hirschmuller, Accurate and efficient stereo processing by semi-global matching and mutual information, Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), vol.2, pp.807-814, 2005.
DOI : 10.1109/cvpr.2005.56

X. Huang, X. Cheng, Q. Geng, B. Cao, D. Zhou et al., The ApolloScape Dataset for Autonomous Driving. arXiv 2018

A. Saxena, S. H. Chung, and A. Y. Ng, Learning depth from single monocular images, Advances in Neural Information Processing Systems, pp.1161-1168, 2006.

A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, Vision meets Robotics: The KITTI Dataset, Int. J. Robot. Res. (IJRR), vol.32, pp.1231-1237, 2013.
DOI : 10.1177/0278364913491297

URL : http://ttic.uchicago.edu/~rurtasun/publications/geiger_et_al_ijrr13.pdf

O. Zendel, M. Murschitz, M. Humenberger, and W. Herzner, How Good Is My Test Data? Introducing Safety Analysis for Computer Vision, Int. J. Comput. Vis, vol.125, pp.95-109, 2017.
DOI : 10.1007/s11263-017-1020-z

URL : https://link.springer.com/content/pdf/10.1007%2Fs11263-017-1020-z.pdf

G. Neuhold, T. Ollmann, S. R. Bulò, and P. Kontschieder, The mapillary vistas dataset for semantic understanding of street scenes, Proceedings of the International Conference on Computer Vision (ICCV), pp.22-29, 2017.

N. Simond and P. Rives, Homography from a vanishing point in urban scenes, Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2003, vol.1, pp.1005-1010, 2003.
DOI : 10.1109/iros.2003.1250759

URL : https://hal.archives-ouvertes.fr/inria-00001038

Z. Zhou, S. He, J. Li, and J. Z. Wang, Modeling perspective effects in photographic composition, Proceedings of the 23rd ACM International Conference on Multimedia, pp.4-6, 2015.
DOI : 10.1145/2733373.2806248

B. Li, K. Peng, X. Ying, and H. Zha, Vanishing point detection using cascaded 1D Hough Transform from single images, Pattern Recognit. Lett, vol.33, pp.1-8, 2012.
DOI : 10.1016/j.patrec.2011.09.027

J. Canny, A computational approach to edge detection, Readings in Computer Vision, pp.184-203, 1987.

H. Chang and F. Tsai, Reconstructing Three-Dimensional Specific Curve Building Models from a Single Perspective View Image, Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci, vol.39, pp.101-106, 2012.
DOI : 10.5194/isprsarchives-xxxix-b6-101-2012

URL : https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XXXIX-B6/101/2012/isprsarchives-XXXIX-B6-101-2012.pdf

F. Liu, C. Shen, G. Lin, and I. Reid, Learning depth from single monocular images using deep convolutional neural fields, IEEE Trans. Pattern Anal. Mach. Intell, vol.38, pp.2024-2039, 2016.
DOI : 10.1109/tpami.2015.2505283

URL : http://arxiv.org/pdf/1502.07411

M. Bertamini, J. Martinovic, and S. M. Wuerger, Integration of ordinal and metric cues in depth processing, J. Vis, vol.8, pp.1-12, 2008.

R. Rzeszutek and D. Androutsos, A framework for estimating relative depth in video, Comput. Vis. Image Underst, vol.133, pp.15-29, 2015.
DOI : 10.1016/j.cviu.2015.01.001

J. Turski, The conformal camera in modeling active binocular vision
DOI : 10.3390/sym8090088

URL : http://www.mdpi.com/2073-8994/8/9/88/pdf

L. Itti, C. Koch, and E. Niebur, A model of saliency-based visual attention for rapid scene analysis, IEEE Trans. Pattern Anal. Mach. Intell, vol.20, pp.1254-1259, 1998.

A. T. Duchowski, Eye Tracking Methodology, 2007.

J. Rigau, M. Feixas, and M. Sbert, Informational aesthetics measures, IEEE Comput. Graph. Appl, vol.28, pp.24-34, 2008.
DOI : 10.1109/mcg.2008.34

URL : https://dugi-doc.udg.edu/bitstream/10256/3065/1/186.pdf

B. Dresp-langley, Affine geometry, visual sensation, and preference for symmetry of things in a thing, vol.8, p.127, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01447461

C. C. Chen, J. H. Wu, and C. C. Wu, Reduction of image complexity explains aesthetic preference for symmetry, vol.3, pp.443-456, 2011.

A. U. Batmaz, M. De-mathelin, and B. Dresp-langley, Effects of Image Size and Structural Complexity on Time and Precision of Hand Movements in Head Mounted Virtual Reality, Proceedings of the 2018 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), pp.18-22, 2018.

I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep Learning, vol.1, 2016.

A. Sussman and J. B. Hollander, Cognitive Architecture: Designing for How We Respond to The Built Environment, 2014.

J. Zacharias, Preferences for view corridors through the urban environment, Landsc. Urban Plan, vol.43, pp.217-225, 1999.

J. W. Danahy, Technology for dynamic viewing and peripheral vision in landscape visualization, Landsc. Urban Plan, vol.54, pp.127-138, 2001.

A. E. Stamps, Fractals, skylines, nature and beauty, Landsc. Urban Plan, vol.60, pp.163-184, 2002.
DOI : 10.1016/s0169-2046(02)00054-3

A. E. Van-den-berg, Y. Joye, and S. L. Koole, Why viewing nature is more fascinating and restorative than viewing buildings: A closer look at perceived complexity. Urban For. Urban Green, vol.20, pp.397-401, 2016.

S. Casalegno, K. Anderson, S. Hancock, and K. J. Gaston, Improving models of urban greenspace: From vegetation surface cover to volumetric survey using waveform laser scanning, Methods Ecol. Evol, vol.8, pp.1443-1452, 2017.