A. Agresti, Categorical Data Analysis, 2013.

H. Bang and J. M. Robins, Doubly Robust Estimation in Missing Data and Causal Inference Models, Biometrics, p.962973, 2005.

J. F. Beaumont, Calibrated imputation in surveys under a quasi-model-assisted approach, Journal of the Royal Statistical Society Series B (Statistical Methodology), vol.67, issue.3, p.445458, 2005.

L. Breiman, Bagging predictors, Machine Learning, vol.24, pp.49-64, 1996.

L. Breiman, Random Forests, Machine Learning, vol.45, pp.5-32, 2001.

L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, Classication and regression trees, 1984.

T. Chang and P. Kott, Using Calibration Weighting to Adjust for Nonresponse under a Plausible Model, Biometrika, vol.95, issue.3, pp.555-571, 2008.

C. Cortes and V. Vapnik, Support-Vector networks, Machine Learning, vol.20, pp.273-297, 1995.

G. De'ath, Multivariate Regression Trees : A New Technique for Modeling SpeciesEnvironment Relationships, Ecology, vol.83, issue.4, pp.1105-1117, 2002.

. De, mvpart : Multivariate Partitioning. R package version 1.6-2, 2014.

L. Breiman, Bagging Predictors, Machine Learning, vol.24, pp.123-140, 1996.

C. Cortes and V. Vapnik, Support-vector networks, Machine Learning, vol.20, issue.3, pp.273-297, 1995.

M. Culp, K. Johnson, and G. Michailidis, ada : An R Package for Stochastic Boosting, Journal of Statistical Software, p.17, 2006.

D. Silva, D. N. , and J. D. Opsomer, A kernel smoothing method of adjusting for unit nonresponse in sample surveys, The Canadian Journal of Statistics, vol.34, p.563579, 2006.

D. Silva, D. N. , and J. D. Opsomer, Nonparametric propensity weighting for survey nonresponse through local polynomial regression, Survey Methodology, vol.35, p.165176, 2009.

A. Ekholm and S. Laaksonen, Weighting via response modeling in the Finnish Household Budget Survey, Journal of Ocial Statistics, vol.3, pp.325-337, 1991.

J. L. Eltinge and I. S. Yansaneh, Diagnostics for formation of nonresponse adjustment cells, with an application to income nonresponse in the U.S. consumer expenditure survey, Survey Methodology, vol.23, p.3340, 1997.

Y. Freund, Boosting a weak learning algorithm by majority. Information and computation, vol.121, pp.256-285, 1995.

Y. Freund and R. E. Schapire, Experiments with a new boosting algorithm, Machine Learning : Proceedings of the thirteenth International Conference, pp.148-156, 1996.

Y. Freund and R. E. Schapire, A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting, Journal of Computer and System Sciences, vol.55, issue.1, pp.119-139, 1997.

J. Friedman, T. Hastie, and R. Tibshirani, Additive logistic regression : a statistical view of Boosting. The annals of statistics, vol.28, pp.337-407, 2000.
DOI : 10.1214/aos/1016120463

URL : https://doi.org/10.1214/aos/1016120463

J. Friedman, Greedy function approximation : a gradient boosting machine, Annals of statistics, pp.1189-1232, 2001.

J. Friedman, Stochastic Gradient Boosting, Computational Statistics and Data Analysis, vol.38, issue.4, pp.367-378, 2002.
DOI : 10.1016/s0167-9473(01)00065-2

A. Giommi, On the estimation of the probability of response in nite population sampling (Italian, Societa Italiana di Statistica, p.32, 1984.

T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning : Data Mining, Inference, and Prediction, 2009.

D. Haziza, Imputation and inference in the presence of missing data. Handbook of statistics, vol.29, pp.215-246, 2009.

D. Haziza and J. F. Beaumont, On the construction of imputation classes in surveys, International Statistical Review, vol.75, issue.1, pp.25-43, 2007.

D. Haziza and J. F. Beaumont, Construction of weights in surveys : a review, Statistical Science, vol.32, pp.206-226, 2017.

D. Haziza and E. Lesage, A discussion of weighting procedures for unit nonresponse, Journal of Ocial Statistics, vol.32, pp.129-145, 2016.

D. Haziza and J. N. Rao, A nonresponse model approach to inference under imputation for missing survey data, Survey Methodology, vol.32, issue.4, pp.53-64, 2006.
DOI : 10.1002/cjs.5550330201

T. K. Ho, Random Decision Forests, Proceedings of the 3rd International Conference on Document Analysis and Recognition, pp.278-282, 1995.

D. W. Hosmer and S. Lemeshow, Applied logistic regression, Wiley Series in Probability and Mathematical Statistics, 2000.
DOI : 10.1002/0471722146

URL : https://onlinelibrary.wiley.com/doi/pdf/10.1002/0471722146.fmatter

T. Hothorn, K. Hornik, and A. Zeileis, Unbiased Recursive Partitioning : A Conditional Inference Framework, Journal of Computational and Graphical Statistics, vol.15, issue.3, pp.651-674, 2006.
DOI : 10.1198/106186006x133933

URL : http://epub.wu.ac.at/676/1/document.pdf

J. Georey and . Mclachlan, Discriminant Analysis and Statistical Pattern Recognition, 2005.

A. Karatzoglou, D. Meyer, and K. Hornik, Support Vector Machines in R, Journal of Statistical Software, issue.9, p.15, 2006.

G. V. Kass, An exploratory technique for investigating large quantities of categorical data, Applied Statistics, vol.29, issue.2, p.119127, 1980.
DOI : 10.2307/2986296

J. K. Kim, Y. Kwon, and M. Park, Calibrated propensity score method for survey nonresponse in cluster sampling, Biometrika, vol.103, pp.461-473, 2016.
DOI : 10.1093/biomet/asw004

C. Li, A Gentle Introduction to Gradient Boosting, 2016.

R. J. Little, Survey Nonresponse Adjustments for Estimates of Means, International Statistical Review, vol.54, p.139157, 1986.
DOI : 10.2307/1403140

R. J. Little and S. Vartivarian, Does weighting for nonresponse increase the variance of survey means ?, Survey Methodology, p.161168, 2005.

;. Mclachlan, . Wiley, J. P. Nakache, and J. Confais, Discriminant Analysis and Statistical Pattern Recognition, Statistique explicative appliquée, pp.206-211, 2003.

A. Niculescu-mizil and R. Caruana, Obtaining Calibrated Probabilities from Boosting. Uncertainty in Articial Intelligence, 2005.

A. Niculescu-mizil and R. Caruana, Predicting Good Probabilities with Supervised Learning, 2005.

P. Phipps and D. Toth, Analyzing establishment nonresponse using an interpretable regression tree model with linked administrative data, Annals of Applied Statistics, vol.6, issue.2, pp.772-794, 2012.

H. Nocairi, C. Gomes, M. Thomas, and G. Saporta, Improving Stacking Methodology for Combining Classiers ; Applications to Cosmetic Industry, Electronic Journal of Applied Statistical Analysis, vol.9, issue.2, pp.340-361, 2016.

E. Parzen, On estimation of a probability density function and mode, Annals of Mathematical Statistics, vol.33, p.10651076, 1962.

J. Platt, Probabilistic outputs for support vector machines and comparison to regularized likelihood methods, Advances in large margin classiers, 2000.

M. Rosenblatt, Remarks on some nonparametric estimates of a density function, Annals of Mathematical Statistics, vol.27, p.832837, 1956.

D. B. Rubin, Inference and Missing Data, Biometrika, vol.63, pp.581-590, 1976.

C. E. Särndal and B. Swensson, A general view of estimation for two-phases of selection with applications to two-phase sampling and non-response, International Statist. Review, vol.55, pp.279-294, 1987.

C. Särndal, B. Swensson, and J. Wretman, Model Assisted Survey Sampling, 1992.

R. E. Schapire, The Strength of Weak Learnability, Machine Learning, vol.5, pp.197-227, 1990.

R. E. Schapire and Y. Singer, Improved boosting algorithms using condence-rated predictions, Machine learning, vol.37, issue.3, pp.297-336, 1999.

J. S. Simono, Smoothing Methods in Statistics, 1996.

B. Schölkopf and A. Smola, Learning with Kernels, 2002.

H. Strasser and C. Weber, On the Asymptotic Theory of Permutation Statistics, Mathematical Methods of Statistics, vol.8, p.220250, 1999.

C. J. Skinner, Inverse probability weighting for clustered nonresponse, Biometrika, vol.98, p.953966, 2011.

V. Vapnik, Statistical Learning Theory, 1998.

D. Wolpert, Stacked Generalization, Neural Networks, vol.5, pp.41-259, 1992.

B. Zadrozny and C. Elkan, Obtaining calibrated probability estimates from decision trees and naive Bayesian classiers, ICML, vol.1, pp.609-616, 2001.

Z. Zhou, Ensemble Methods : Foundations and Algorithms, 2012.