M. Albert, Peptides as triggers of plant defence, Journal of Experimental Botany, vol.64, pp.5269-5279, 2013.

A. Armenteros, J. J. Sønderby, C. K. Sønderby, S. K. Nielsen, H. Winther et al., DeepLoc: prediction of protein subcellular localization using deep learning, Bioinformatics, vol.33, pp.3387-3395, 2017.

Y. Amano, H. Tsubouchi, H. Shinohara, M. Ogawa, and Y. Matsubayashi,

, Tyrosine-sulfated glycopeptide involved in cellular proliferation and expansion in Arabidopsis, Proceedings of the National Academy of Sciences, vol.104, pp.18333-18338

, Evidence for network evolution in an Arabidopsis interactome map, Science, vol.333, pp.601-607, 2011.

S. A. Arisz and T. Munnik, Distinguishing phosphatidic acid pools from de novo synthesis, PLD, and DGK, Plant lipid signaling protocols, pp.55-62, 2013.

T. Asai, G. Tena, J. Plotnikova, M. R. Willmann, W. L. Chiu et al., MAP kinase signalling cascade in Arabidopsis innate immunity, Nature, vol.415, pp.977-983, 2002.

S. Aubourg, M. L. Martin-magniette, and V. Brunaud,

T. L. Bailey, J. Johnson, C. E. Grant, and W. S. Noble, The MEME Suite, vol.43, pp.39-49, 2015.

S. Bartels and T. Boller, Quo vadis, Pep? Plant elicitor peptides at the crossroads of immunity, stress, and development, Journal of Experimental Botany, vol.66, pp.5183-5193, 2015.

S. Betsuyaku, S. Sawa, and M. Yamada, A renaissance of elicitors: perception of microbeassociated molecular patterns and danger signals by pattern-recognition receptors, Annual Review of Plant Biology, vol.60, pp.379-406, 2009.

M. Boudsocq, M. R. Willmann, M. Mccormack, H. Lee, L. Shan et al., Differential innate immune signalling via Ca 2+ sensor protein kinases, Nature, vol.464, pp.418-422, 2010.

P. Buscaill and S. Rivas, Transcriptional control of plant defence responses, Current Opinion in Plant Biology, vol.20, pp.35-46, 2014.

D. Chinchilla, L. Shan, P. He, S. De-vries, and B. Kemmerling, One for all: the receptor-associated kinase BAK1, Trends in Plant Science, vol.14, pp.535-541, 2009.

A. Degrave, M. Fagard, C. Perino, M. N. Brisset, S. Gaubert et al., Erwinia amylovora type three-secreted proteins trigger cell death and defense responses in Arabidopsis thaliana, Molecular Plant-Microbe Interactions, vol.21, pp.1076-1086, 2008.

D. Lorenzo, G. Brutus, A. Savatin, D. V. Sicilia, F. Cervone et al., Engineering plant resistance by constructing chimeric receptors that recognize damage-associated molecular patterns (DAMPs), FEBS Letters, vol.585, pp.1521-1528, 2011.

S. Dèrozier, F. Samson, and J. P. Tamby, Novel disease susceptibility factors for fungal necrotrophic pathogens in Arabidopsis. PLoS Pathogens 11, e1004800. Dunand C, Crèvecoeur M, Penel C. 2007. Distribution of superoxide and hydrogen peroxide in Arabidopsis root and their influence on root development: possible interaction with peroxidases, New Phytologist, vol.7, pp.332-341, 2011.

M. Fauth, P. Schweizer, A. Buchala, C. Markstadter, M. Riederer et al., , vol.117, pp.1373-1380, 1998.

S. Ferrari, R. Galletti, C. Denoux, D. Lorenzo, G. Ausubel et al., Resistance to Botrytis cinerea induced in Arabidopsis by elicitors is independent of salicylic acid, ethylene, or jasmonate signaling but requires PHYTOALEXIN DEFICIENT3, Plant Physiology, vol.144, pp.367-379, 2007.

P. Flury, D. Klauser, B. Schulze, T. Boller, and S. Bartels, The anticipation of danger: microbe-associated molecular pattern perception enhances AtPep-triggered oxidative burst, Plant Physiology, vol.161, pp.2023-2035, 2013.

S. Gagnot, J. P. Tamby, M. L. Martin-magniette, F. Bitton, L. Taconnat et al., CATdb: a public access to Arabidopsis transcriptome data from the URGV-CATMA platform, Nucleic Acids Research, vol.36, pp.986-990, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01203869

H. B. Gao, Y. J. Chu, and H. W. Xue, Phosphatidic acid (PA) binds PP2AA1 to regulate PP2A activity and PIN1 polar localization, Molecular Plant, vol.6, pp.1692-1702, 2013.

L. Gómez-gómez and T. Boller, FLS2: an LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis, Molecular Cell, vol.5, pp.1003-1011, 2000.

R. K. Goyal and A. K. Mattoo,

A. A. Gust, R. Pruitt, and T. Nürnberger, Sensing danger: key to activating plant immunity, Trends in Plant Science, vol.22, pp.779-791, 2017.

M. Heil, E. Ibarra-laclette, R. M. Adame-Álvarez, O. Martínez, E. Ramirezchávez et al., How plants sense wounds: damaged-self recognition is based on plant-derived elicitors and induces octadecanoid signaling, PLoS One, vol.7, p.30537, 2012.

P. Hilson, J. Allemeersch, and T. Altmann, Versatile gene-specific sequence tags for Arabidopsis functional genomics: transcript profiling and reverse genetics applications, Genome Research, vol.14, pp.2176-2189, 2004.

S. Hou, X. Wang, D. Chen, X. Yang, M. Wang et al., An endogenous peptide signal in Arabidopsis activates components of the innate immune response, Proceedings of the National Academy of Sciences, USA 103, vol.10, pp.10098-10103, 2006.

A. Huffaker and C. A. Ryan, Endogenous peptide defense signals in Arabidopsis differentially amplify signaling for the innate immune response, Proceedings of the National Academy of Sciences, vol.104, pp.10732-10736, 2007.

T. Hruz, O. Laule, G. Szabo, F. Wessendorp, S. Bleuler et al., Arabidopsis roots and shoots show distinct temporal adaptation patterns toward nitrogen starvation, Advances in Bioinformatics, vol.157, pp.1255-1282, 2008.

O. Krinke, M. Flemr, and C. Vergnolle, Phospholipase D activation is an early component of the salicylic acid signaling pathway in Arabidopsis cell suspensions, Plant Physiology, vol.150, pp.424-436, 2009.

E. Krol, T. Mentzel, and D. Chinchilla, Perception of the Arabidopsis danger signal peptide 1 involves the pattern recognition receptor AtPEPR1 and its close homologue AtPEPR2, Journal of Biological Chemistry, vol.285, pp.13471-13479, 2010.

K. A. Lease and J. C. Walker, The Arabidopsis unannotated secreted peptide database, a resource for plant peptidomics, Plant Physiology, vol.142, pp.831-838, 2006.

K. A. Lease and J. C. Walker, Bioinformatic identification of plant peptides, Methods in Molecular Biology, vol.615, pp.375-383, 2010.
DOI : 10.1007/978-1-60761-535-4_26

H. Lee, O. K. Chah, and J. Sheen, Stem-cell-triggered immunity through CLV3p-FLS2 signalling, Nature, vol.473, pp.376-379, 2011.
DOI : 10.1038/nature09958

URL : http://europepmc.org/articles/pmc3098311?pdf=render

M. Lepage, Identification and composition of turnip root lipids, Lipids, vol.2, pp.244-250, 1967.
DOI : 10.1007/bf02532563

J. Li, G. Brader, and E. T. Palva, The WRKY70 transcription factor: a node of convergence for jasmonate-mediated and salicylate-mediated signals in plant defense, The Plant Cell, vol.16, pp.319-331, 2004.

J. Liu, S. Chen, L. Chen, Q. Zhou, M. Wang et al., BIK1 cooperates with BAK1 to regulate constitutive immunity and cell death in Arabidopsis, Journal of Integrative Plant Biology, vol.59, pp.234-239, 2017.

E. Luna, V. Pastor, J. Robert, V. Flors, B. Mauch-mani et al., Callose deposition: a multifaceted plant defense response, Molecular PlantMicrobe Interactions, vol.24, pp.183-193, 2011.
DOI : 10.1094/mpmi-07-10-0149

URL : https://apsjournals.apsnet.org/doi/pdf/10.1094/MPMI-07-10-0149

C. Lurin, C. Andrés, and S. Aubourg, Genome-wide analysis of Arabidopsis pentatricopeptide repeat proteins reveals their essential role in organelle biogenesis, The Plant Cell, vol.16, pp.2089-2103, 2004.

N. Marmiroli and E. Maestri, Plant peptides in defense and signaling, Peptides, vol.56, pp.30-44, 2014.
DOI : 10.1016/j.peptides.2014.03.013

Y. Matsubayashi, Small post-translationally modified peptide signals in Arabidopsis. The Arabidopsis Book 9, e0150. Matsubayashi Y. 2014. Small-peptide signals in plants, Annual Review of Plant Biology, vol.65, pp.385-413, 2011.
DOI : 10.1199/tab.0150

URL : http://europepmc.org/articles/pmc3268502?pdf=render

Y. Matsuzaki, M. Ogawa-ohnishi, A. Mori, and Y. Matsubayashi, Secreted peptide signals required for maintenance of root stem cell niche in Arabidopsis, Science, vol.329, pp.1065-1067, 2010.

C. Maugis, G. Celeux, and M. Martin-magniette, Variable selection in model-based clustering: a general variable role modeling, Computational Statistics & Data Analysis, vol.53, pp.3872-3882, 2009.
URL : https://hal.archives-ouvertes.fr/inria-00342108

M. Moreau, A. Degrave, R. Vedel, F. Bitton, O. Patrit et al., EDS1 contributes to nonhost resistance of Arabidopsis thaliana against Erwinia amylovora, Molecular Plant-Microbe Interactions, vol.25, pp.421-430, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00921325

S. Mosher, H. Seybold, and P. Rodriguez, The tyrosine-sulfated peptide receptors PSKR1 and PSY1R modify the immunity of Arabidopsis to biotrophic and necrotrophic pathogens in an antagonistic manner, The Plant Journal, vol.73, pp.469-482, 2013.

P. Y. Muller, H. Janovjak, A. R. Miserez, and Z. Dobbie, Processing of gene expression data generated by quantitative real-time RT-PCR, Biotechniques, vol.32, p.1378, 1376.

T. Munnik, A. Musgrave, and T. De-vrije, Rapid turnover of polyphosphoinositides in carnation flower petals, Planta, vol.193, pp.89-98, 1994.

E. Murphy, S. Smith, D. Smet, and I. , Small signaling peptides in Arabidopsis development: how cells communicate over a short distance, The Plant Cell, vol.24, pp.3198-3217, 2012.

H. Nielsen, Predicting secretory proteins with signalp, Methods in Molecular Biology, vol.1611, pp.59-73, 2017.

S. Pochon, E. Terrasson, G. T. Iacomi-vasilescu, B. Georgeault, S. Juchaux et al., The Arabidopsis thaliana-Alternaria brassicicola pathosystem: a model interaction for investigating seed transmission of necrotrophic fungi, Progress in Lipid Research, vol.8, pp.43-53, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01190780

L. Poncini, I. Wyrsch, D. Tendon, V. Vorley, T. Boller et al., Yeast increases resistance in Arabidopsis against Pseudomonas syringae and Botrytis cinerea by salicylic acid-dependent as well as -independent mechanisms, Molecular Plant-Microbe Interactions, vol.19, pp.1138-1146, 2006.

I. Roberts, S. Smith, D. Rybel, B. Van-den-broeke, J. Smet et al., The CEP family in land plants: evolutionary analyses, expression studies, and role in Arabidopsis shoot development, Journal of Experimental Botany, vol.64, pp.5371-5381, 2013.

N. Rodiuc, X. Barlet, and S. Hok, Evolutionarily distant pathogens require the Arabidopsis phytosulfokine signalling pathway to establish disease, Plant, Cell & Environment, vol.39, pp.1396-1407, 2016.

D. Schöner, S. Barkow, S. Bleuler, A. Wille, P. Zimmermann et al., Network analysis of systems elements, EXS, vol.97, pp.331-351, 2007.

B. Schulze, T. Mentzel, A. K. Jehle, K. Mueller, S. Beeler et al., Rapid heteromerization and phosphorylation of ligandactivated plant transmembrane receptors and their associated kinase BAK1, Journal of Biological Chemistry, vol.285, pp.9444-9451, 2010.

C. Segonzac, A. P. Macho, M. Sanmartín, V. Ntoukakis, J. J. Sánchez-serrano et al., Negative control of BAK1 by protein phosphatase 2A during plant innate immunity, The EMBO Journal, vol.33, pp.2069-2079, 2014.

Y. Shen, A. C. Diener, K. A. Silverstein, . Wa, H. C. Wu et al., Arabidopsis thaliana RESISTANCE TO FUSARIUM OXYSPORUM 2 implicates tyrosine-sulfated peptide signaling in susceptibility and resistance to root infection, The Plant Journal, vol.9, pp.262-280, 2007.

I. Small, N. Peeters, F. Legeai, and C. Lurin, Predotar: a tool for rapidly screening proteomes for N-terminal targeting sequences, Proteomics, vol.4, pp.1581-1590, 2004.

D. Szklarczyk, J. H. Morris, and H. Cook, The STRING database in 2017: quality-controlled protein-protein association networks, made broadly accessible, Nucleic Acids Research, vol.45, pp.362-368, 2017.

P. Tavormina, D. Coninck, B. Nikonorova, N. , D. Smet et al., The plant peptidome: an expanding repertoire of structural features and biological functions, The Plant Cell, vol.27, pp.2095-2118, 2015.

M. A. Torres, J. D. Jones, and J. L. Dangl, Reactive oxygen species signaling in response to pathogens, Plant Physiology, vol.141, pp.373-378, 2006.

H. Tsukagoshi, W. Busch, P. N. Benfey, A. H. Van-der-luit, T. Piatti et al., Elicitation of suspension-cultured tomato cells triggers the formation of phosphatidic acid and diacylglycerol pyrophosphate, Plant Physiology, vol.143, pp.1507-1516, 2000.

J. S. Venisse, G. Gullner, and M. N. Brisset, Evidence for the involvement of an oxidative stress in the initiation of infection of pear by Erwinia amylovora, Plant Physiology, vol.125, pp.2164-2172, 2001.

A. K. Vie, J. Najafi, B. Liu, P. Winge, M. A. Butenko et al., The IDA/IDA-LIKE and PIP/ PIP-LIKE gene families in Arabidopsis: phylogenetic relationship, expression patterns, and transcriptional effect of the PIPL3 peptide, Journal of Experimental Botany, vol.66, pp.5351-5365, 2015.

D. Walters and M. Heil, Costs and trade-offs associated with induced resistance, Physiological and Molecular Plant Pathology, vol.71, pp.3-17, 2007.

R. Whitford, A. Fernandez, and R. Tejos, GOLVEN secretory peptides regulate auxin carrier turnover during plant gravitropic responses, Developmental Cell, vol.22, pp.678-685, 2012.

R. Zaag, J. P. Tamby, and C. Guichard, GEM2Net: from gene expression modeling to -omics networks, a new CATdb module to investigate Arabidopsis thaliana genes involved in stress response, Nucleic Acids Research, vol.43, pp.1010-1017, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01137554

Y. Zhang, H. Zhu, Q. Zhang, M. Li, M. Yan et al., Phospholipase D?1 and phosphatidic acid regulate NADPH oxidase activity and production of reactive oxygen species in ABA-mediated stomatal closure in Arabidopsis, The Plant Cell, vol.21, p.3, 2009.