H. Jiang and D. B. Egli, Shade Induced Changes in Flower and Pod Number and Flower and Fruit Abscission in Soybean, Agrono. J, vol.85, pp.221-225, 1993.

R. A. Richards, Selectable traits to increase crop photosynthesis and yield of grain crops, J. Exp. Bot, vol.51, pp.447-458, 2000.

C. Rameau, J. Bertheloot, N. Leduc, B. Andrieu, F. Foucher et al., Multiple pathways regulate shoot branching, Front. Plant. Sci, vol.5, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01168759

Y. Wang and Y. Jiao, Axillary meristem initiation-a way to branch out, Curr. Opin. Plant. Biol, vol.41, pp.61-66, 2018.

, Int. J. Mol. Sci, vol.20, p.3808, 2019.

M. Wang, M. A. Le-moigne, J. Bertheloot, L. Crespel, M. D. Perez-garcia et al., BRANCHED1:A key hub of shoot branching, Front. Plant Sci, vol.10, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02025844

J. A. Aguilar-martínez, C. Poza-carrión, and P. Cubas, Arabidopsis BRANCHED1 acts as an integrator of branching signals within axillary buds, Plant. Cell, vol.19, pp.458-472, 2007.

M. Seale, T. Bennett, and O. Leyser, BRC1 expression regulates bud activation potential, but is not necessary or sufficient for bud growth inhibition in Arabidopsis, vol.144, pp.1661-1673, 2017.

J. Doebley, A. Stec, and L. Hubbard, The evolution of apical dominance in maize, Nature, vol.386, pp.485-488, 1997.

T. Takeda, Y. Suwa, M. Suzuki, H. Kitano, M. Ueguchistanaka et al., The OsTB1 gene negatively regulates lateral branching in rice, Plant. J, vol.33, pp.513-520, 2003.

T. H. Kebrom, B. L. Burson, and S. A. Finlayson, Phytochrome B represses Teosinte Branched1 expression and induces sorghum axillary bud outgrowth in response to light signals, Plant. Physiol, vol.140, pp.1109-1117, 2006.

S. Kosugi and Y. Ohashi, PCF1 and PCF2 specifically bind to cis elements in the rice proliferating cell nuclear antigen gene, Plant. Cell, vol.9, pp.1607-1619, 1997.

P. Cubas, N. Lauter, J. Doebley, and E. Coen, The TCP domain: A motif found in proteins regulating plant growth and development. The Plant, vol.18, pp.215-222, 1999.

S. Kosugi and Y. Ohashi, DNA binding and dimerization specificity and potential targets for the TCP protein family, Plant. J, vol.30, pp.337-348, 2002.

L. Hubbard, P. Mcsteen, J. Doebley, and S. Hake, Expression patterns and mutant phenotype of teosinte branched1 correlate with growth suppression in maize and teosinte, Genet, vol.162, pp.1927-1935, 1999.

R. L. Wang, A. Stec, J. Hey, L. Lukens, and J. Doebley, The limits of selection during maize domestication, Nature, vol.398, pp.236-239, 1999.

K. Maurel, G. B. Leite, M. Bonhomme, A. Guilliot, R. Rageau et al., Trophic control of bud break in peach (Prunus persica) trees: A possible role of hexoses, Tree Physiol, vol.24, pp.579-588, 2004.
URL : https://hal.archives-ouvertes.fr/hal-01190886

M. Bonhomme, M. Peuch, T. Ameglio, R. Rageau, A. Guilliot et al., Carbohydrate uptake from xylem vessels and its distribution among stem tissues and buds in walnut (Juglans regia L.), Tree Physiol, vol.30, pp.89-102, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00729456

T. Girault, F. Abidi, M. Sigogne, S. Pelleschi-travier, R. Boumaza et al., Sugars are under light control during bud burst in Rosa sp, Plant Cell Environ, vol.33, pp.1339-1350, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00729623

C. Henry, A. Rabot, M. Laloi, E. Mortreau, M. Sigogne et al., Regulation of RhSUC2, a sucrose transporter, is correlated with the light control of bud burst in Rosa sp, Plant. Cell Environ, vol.34, pp.1776-1789, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00715799

T. H. Kebrom, T. P. Brutnell, and S. A. Finlayson, Suppression of sorghum axillary bud outgrowth by shade, phyB and defoliation signalling pathways, Plant. Cell Environ, vol.33, pp.48-58, 2010.

T. H. Kebrom, T. P. Brutnell, D. B. Hays, and S. A. Finlayson, Vegetative axillary bud dormancy induced by shade and defoliation signals in the grasses, Plant. Signal. Behav, vol.5, pp.317-319, 2010.

T. Kebrom, P. Chandler, S. Swain, R. King, R. Richards et al., Inhibition of tiller bud outgrowth in the tin mutant of wheat is associated with precocious internode development, Plant. Physiol, vol.160, pp.308-318, 2012.

A. Rabot, C. Henry, K. Ben-baaziz, E. Mortreau, W. Azri et al., Insight into the role of sugars in bud burst under light in the rose, Plant. Cell Physiol, vol.53, pp.1068-1082, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00841828

F. Fichtner, F. F. Barbier, R. Feil, M. Watanabe, M. G. Annunziata et al., Trehalose 6-phosphate is involved in triggering axillary bud outgrowth in garden pea (Pisum sativum L.), Plant. J, vol.92, pp.611-623, 2017.

M. G. Mason, J. J. Ross, B. A. Babst, B. N. Wienclaw, and C. A. Beveridge, Sugar demand, not auxin, is the initial regulator of apical dominance, Proc. Natl. Acad. Sci, vol.111, pp.6092-6097, 2014.

J. B. Evers, Sugar as a key component of the shoot branching regulation network, Plant. Cell Environ, vol.38, pp.1455-1456, 2015.

, Int. J. Mol. Sci, vol.20, pp.3808-3826, 2019.

F. Barbier, T. Péron, M. Lecerf, M. D. Perez-garcia, Q. Barrière et al., Sucrose is an early modulator of the key hormonal mechanisms controlling bud outgrowth in Rosa hybrida, J. Exp. Bot, vol.66, pp.2569-2582, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01168798

T. H. Kebrom and J. E. Mullet, Photosynthetic leaf area modulates tiller bud outgrowth in sorghum, Plant. Cell Environ, vol.38, pp.1471-1478, 2015.

S. Shimizu-sato, M. Tanaka, and H. Mori, Auxin-cytokinin interactions in the control of shoot branching, Plant. Mol. Biol, vol.69, p.429, 2009.

P. B. Brewer, E. A. Dun, B. J. Ferguson, C. Rameau, and C. A. Beveridge, Strigolactone acts downstream of auxin to regulate bud outgrowth in pea and Arabidopsis, Plant. Physiol, vol.150, pp.482-493, 2009.

E. A. Dun, A. De-saint-germain, C. Rameau, and C. A. Beveridge, Antagonistic action of strigolactone and cytokinin in bud outgrowth control, Plant Physiol, vol.158, pp.487-498, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01004268

N. J. Kruger and A. Von-schaewen, The oxidative pentose phosphate pathway: Structure and organisation, Curr. Opin. Plant Biol, vol.6, pp.236-246, 2003.

S. Smeekens, J. Ma, J. Hanson, and F. Rolland, Sugar signals and molecular networks controlling plant growth, Curr. Opin. Plant Biol, vol.13, pp.273-278, 2010.

J. Lastdrager, J. Hanson, and S. Smeekens, Sugar signals and the control of plant growth and development, J. Exp. Bot, vol.65, pp.799-807, 2014.

L. Lejay, J. Wirth, M. Pervent, J. M. Cross, P. Tillard et al., Oxidative pentose phosphate pathway-dependent sugar sensing as a mechanism for regulation of root ion transporters by photosynthesis, Plant. Physiol, vol.146, pp.2036-2053, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00275686

S. Sakr, M. Wang, F. Dédaldéchamp, M. D. Perez-garcia, L. Ogé et al., The Sugar-Signaling Hub: Overview of Regulators and Interaction with the Hormonal and Metabolic Network, Int. J. Mol. Sci, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01891832

J. J. Sheu, S. P. Jan, H. T. Lee, and S. M. Yu, Control of transcription and mRNA turnover as mechanisms of metabolic repression of ?-amylase gene expression, Plant. J, vol.5, pp.655-664, 1994.

M. T. Chan and S. M. Yu, The 3 untranslated region of a rice ?-amylase gene functions as a sugar-dependent mRNA stability determinant, Proc. Natl. Acad. Sci, vol.95, pp.6543-6547, 1998.

W. H. Cheng, E. W. Taliercio, and P. S. Chourey, Sugars modulate an unusual mode of control of the cell-wall invertase gene (Incw1) through its 3 untranslated region in a cell suspension culture of maize, Proc. Natl. Acad. Sci, vol.96, pp.10512-10517, 1999.

M. Nicolai, M. A. Roncato, A. S. Canoy, D. Rouquie, X. Sarda et al., Large-scale analysis of mRNA translation states during sucrose starvation in Arabidopsis cells identifies cell proliferation and chromatin structure as targets of translational control, Plant. Physiol, vol.141, pp.663-673, 2006.

J. D. Keene, RNA regulons: Coordination of post-transcriptional events, Nat. Rev. Genet, vol.8, p.533, 2007.

M. Wang, L. Ogé, M. D. Perez-garcia, L. Hamama, and S. Sakr, The PUF Protein Family: Overview on PUF RNA targets, biological functions, and post transcriptional regulation, Int. J. Mol. Sci, vol.19, p.410, 2018.

M. Wickens, D. S. Bernstein, J. Kimble, and R. Parker, A PUF family portrait: 3 UTR regulation as a way of life, Trends Genet, vol.18, pp.150-157, 2002.

P. P. Tam, I. H. Barrette-ng, D. M. Simon, M. W. Tam, A. L. Ang et al., The PUF family of RNA-binding proteins in plants: Phylogeny, structural modeling, activity and subcellular localization, BMC Plant Biol, vol.10, p.44, 2010.

K. Friend, Z. T. Campbell, A. Cooke, P. Kroll-conner, M. P. Wickens et al., A conserved PUF-Ago-eEF1A complex attenuates translation elongation, Nat. Struct. Mol. Biol, vol.19, pp.176-183, 2014.

J. Van-etten, T. L. Schagat, J. Hrit, C. A. Weidmann, J. Brumbaugh et al., Human Pumilio proteins recruit multiple deadenylases to efficiently repress messenger RNAs, J. Biol. Chem, vol.287, pp.36370-36383, 2012.

W. O. Miles, K. Tschöp, A. Herr, J. Y. Ji, and N. J. Dyson, Pumilio facilitates miRNA regulation of the E2F3 oncogene, Genes Dev, vol.26, pp.356-368, 2012.

S. Lee, F. Kopp, T. C. Chang, A. Sataluri, B. Chen et al., Noncoding RNA NORAD regulates genomic stability by sequestering PUMILIO proteins, Cell, vol.164, pp.69-80, 2016.

, Int. J. Mol. Sci, vol.20, pp.3808-3827, 2019.

C. W. Francischini and R. B. Quaggio, Molecular characterization of Arabidopsis thaliana PUF proteins-binding specificity and target candidates, FEBS J, vol.276, pp.5456-5470, 2009.

C. Zhang and D. G. Muench, A nucleolar PUF RNA-binding protein with specificity for a unique RNA sequence, J. Biol. Chem, vol.290, pp.30108-30118, 2015.

M. T. Chan and S. M. Yu, The 3 untranslated region of a rice ?-amylase gene mediates sugar-dependent abundance of mRNA, Plant. J, vol.15, pp.685-695, 1998.

A. N. Wick, D. R. Drury, H. I. Nakada, and J. B. Wolfe, Localization of the primary metabolic block produced by 2-deoxyglucose, J. Biol. Chem, vol.224, pp.963-969, 1957.

Y. Xiong, M. Mccormack, L. Li, Q. Hall, C. Xiang et al., Glucose-TOR signalling reprograms the transcriptome and activates meristems, Nature, vol.496, 2013.

K. Lange and E. R. Proft, Inhibition of the 6-phosphogluconate dehydrogenase in the rat kidney by 6-aminonicotinamide, Naunyn Schmiedeberg Arch. Pharmacol, vol.267, pp.177-180, 1970.

J. S. Hothersall, M. Gordge, and A. A. Noronha-dutra, Inhibition of NADPH supply by 6-aminonicotinamide: Effect on glutathione, nitric oxide and superoxide in J774 cells, FEBS Lett, vol.434, pp.97-100, 1998.

S. Aubert, E. Gout, R. Bligny, and R. Douce, Multiple effects of glycerol on plant cell metabolism. Phosphorus-31 nuclear magnetic resonance studies, J. Biol. Chem, vol.269, pp.21420-21427, 1994.

S. Jung, M. Staton, T. Lee, A. Blenda, R. Svancara et al., Genome Database for Rosaceae): Integrated web-database for Rosaceae genomics and genetics data, Nucleic Acids Res, vol.36, 2007.

S. Jung, T. Lee, C. H. Cheng, K. Buble, P. Zheng et al., 15 years of GDR: New data and functionality in the Genome Database for Rosaceae, Nucleic acids Res, vol.47, pp.1137-1145, 2018.

H. Saint-oyant, L. Ruttink, T. Hamama, L. Kirov, I. Lakhwani et al., A high-quality genome sequence of Rosa chinensis to elucidate ornamental traits, Nat. Plants, vol.4, pp.473-484, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01873309

N. Abbasi, Y. I. Park, and S. B. Choi, Pumilio Puf domain RNA-binding proteins in Arabidopsis, Plant. Signal. Behav, vol.6, pp.364-368, 2011.

T. Schwede, J. Kopp, N. Guex, and M. C. Peitsch, SWISS-MODEL: An automated protein homology-modeling server, Nucleic Acids Res, vol.31, pp.3381-3385, 2003.

M. Biasini, S. Bienert, A. Waterhouse, K. Arnold, G. Studer et al., SWISS-MODEL: Modelling protein tertiary and quaternary structure using evolutionary information, Nucleic Acids Res, vol.42, issue.W1, pp.252-258, 2014.

P. Horton, K. J. Park, T. Obayashi, N. Fujita, H. Harada et al., Protein localization predictor, Nucleic Acids Res, vol.35, pp.585-587, 2007.

X. Li, K. Xia, Z. Liang, K. Chen, C. Gao et al., MicroRNA393 is involved in nitrogen-promoted rice tillering through regulation of auxin signal transduction in axillary buds, Sci. Rep, vol.6, 2016.

M. Niwa, Y. Daimon, K. I. Kurotani, A. Higo, J. L. Pruneda-paz et al., Plant. Cell, vol.25, pp.1228-1242, 2013.

Y. Yang, M. Nicolas, J. Zhang, H. Yu, D. Guo et al., The TIE1 transcriptional repressor controls shoot branching by directly repressing BRANCHED1 in Arabidopsis, PLoS Genet, vol.14, 2018.

V. Parapunova, M. Busscher, J. Busscher-lange, M. Lammers, R. Karlova et al., Identification, cloning and characterization of the tomato TCP transcription factor family, BMC Plant Biol, vol.14, 2014.

J. Liu, X. Cheng, P. Liu, D. Li, T. Chen et al., MicroRNA319-regulated TCPs interact with FBHs and PFT1 to activate CO transcription and control flowering time in Arabidopsis, PLoS Genet, vol.13, 2017.

Q. Liu and Y. Q. Chen, Insights into the mechanism of plant development: Interactions of miRNAs pathway with phytohormone response, Biochem. Biophys. Res. Commun, vol.384, pp.1-5, 2009.

M. Zhou and H. Luo, Role of microRNA319 in creeping bentgrass salinity and drought stress response, Plant. Signal. Behav, vol.9, pp.1375-1391, 2014.

, Int. J. Mol. Sci, 2019.

M. Gandikota, R. P. Birkenbihl, S. Höhmann, G. H. Cardon, H. Saedler et al., The miRNA156/157 recognition element in the 3 UTR of the Arabidopsis SBP box gene SPL3 prevents early flowering by translational inhibition in seedlings, Plant. J, vol.49, pp.683-693, 2007.

S. Schwarz, A. V. Grande, N. Bujdoso, H. Saedler, and P. Huijser, The microRNA regulated SBP-box genes SPL9 and SPL15 control shoot maturation in Arabidopsis, Plant. Mol. Biol, vol.67, pp.183-195, 2008.

T. Bennett, Y. Liang, M. Seale, S. Ward, D. Müller et al., Strigolactone regulates shoot development through a core signalling pathway, Biol. Open, vol.5, pp.1806-1820, 2016.

K. Koch, Sucrose metabolism: Regulatory mechanisms and pivotal roles in sugar sensing and plant development, Curr. Opin. Plant Biol, vol.7, pp.235-246, 2004.

S. I. Gibson, Control of plant development and gene expression by sugar signaling, Curr. Opin. Plant Biol, vol.8, pp.93-102, 2005.

Y. L. Ruan, Sucrose metabolism: Gateway to diverse carbon use and sugar signaling, Annu. Rev. Plant Biol, vol.65, pp.33-67, 2014.

M. Chekulaeva and W. Filipowicz, Mechanisms of miRNA-mediated post-transcriptional regulation in animal cells, Curr. Opin. Cell Biol, vol.21, pp.452-460, 2009.

W. Filipowicz, S. N. Bhattacharyya, and N. Sonenberg, Mechanisms of post-transcriptional regulation by microRNAs: Are the answers in sight?, Nat. Rev. Genet, vol.9, 2008.

M. N. Corradetti and K. L. Guan, Upstream of the mammalian target of rapamycin: Do all roads pass through mTOR? Oncogene, vol.25, 2006.

Y. Liu and D. C. Bassham, TOR is a negative regulator of autophagy in Arabidopsis thaliana, PLoS ONE, vol.5, 2010.

J. Van-leene, C. Han, A. Gadeyne, D. Eeckhout, C. Matthijs et al., Capturing the phosphorylation and protein interaction landscape of the plant TOR kinase, Nat. Plants, vol.5, p.316, 2019.

Z. Qiu, W. Guo, Q. Wang, Z. Chen, S. Huang et al., MicroRNA-124 reduces the pentose phosphate pathway and proliferation by targeting PRPS1 and RPIA mRNAs in human colorectal cancer cells, Gastroenterology, vol.149, pp.1587-1598, 2015.

C. Cosentino, D. Grieco, and V. Costanzo, ATM activates the pentose phosphate pathway promoting anti-oxidant defence and DNA repair, EMBO J, vol.30, pp.546-555, 2011.

L. W. Barrett, S. Fletcher, and S. D. Wilton, Regulation of eukaryotic gene expression by the untranslated gene regions and other non-coding elements, Cell. Mol. Life Sci, vol.69, pp.3613-3634, 2012.

C. T. Valley, D. F. Porter, C. Qiu, Z. T. Campbell, T. M. Hall et al., Patterns and plasticity in RNA-protein interactions enable recruitment of multiple proteins through a single site, Proc. Natl. Acad. Sci, vol.109, pp.6054-6059, 2012.

L. J. García-rodríguez, A. C. Gay, and L. A. Pon, PUF3p, a Pumilio family RNA binding protein, localizes to mitochondria and regulates mitochondrial biogenesis and motility in budding yeast, J. Cell Biol, vol.176, pp.197-207, 2007.

E. Zhao, T. Maj, I. Kryczek, W. Li, K. Wu et al., Cancer mediates effector T cell dysfunction by targeting microRNAs and EZH2 via glycolysis restriction, Nat. Immunol, vol.2106, p.95

H. Tang, M. Lee, O. Sharpe, L. Salamone, E. J. Noonan et al., Oxidative stress-responsive microRNA-320 regulates glycolysis in diverse biological systems, FASEB J, vol.26, pp.4710-4721, 2012.

J. E. Miller and J. Reese, Ccr4-Not complex: The control freak of eukaryotic cells, Critical reviews Biochem. Mol. Biol, vol.47, pp.315-333, 2012.

M. A. Collart and O. O. Panasenko, The Ccr4-not complex, Gene, vol.492, pp.42-53, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01632826

T. Arae, K. Morita, R. Imahori, Y. Suzuki, S. Yasuda et al., Identification of Arabidopsis CCR4-NOT Complexes with Pumilio RNA-Binding Proteins, APUM5 and APUM2, Plant. Cell Physiol, 2019.

T. Nakagawa, T. Kurose, T. Hino, K. Tanaka, M. Kawamukai et al., Development of series of gateway binary vectors, pGWBs, for realizing efficient construction of fusion genes for plant transformation, J. Biosci. Bioeng, vol.104, pp.34-41, 2007.

L. Hamama, L. Voisine, S. Pierre, D. Cesbron, L. Ogé et al., Improvement of in vitro donor plant competence to increase de novo shoot organogenesis in rose genotypes, Sci. Hortic, vol.252, pp.85-95, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02278794

M. M. Mohan and S. M. Ibrahim, Callus induction from leaf bit explants of rose, Res. Crops, vol.1, pp.71-73, 2000.

S. J. Clough and A. F. Bent, Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana, Plant J, vol.16, pp.735-743, 1998.

C. A. Schneider, W. S. Rasband, K. W. Eliceiri, and . Nih, Image to ImageJ: 25 years of image analysis, Nat. Methods, vol.9, p.671, 2012.

S. L. Chua, W. C. Too, B. Y. Khoo, and L. L. Few, UBC and YWHAZ as suitable reference genes for accurate normalisation of gene expression using MCF7, HCT116 and HepG2 cell lines, Cytotechnology, vol.63, pp.645-654, 2011.

M. Jain, A. Nijhawan, A. K. Tyagi, and J. P. Khurana, Validation of housekeeping genes as internal control for studying gene expression in rice by quantitative real-time PCR, Biochem. Biophys. Res. Commun, vol.345, pp.646-651, 2006.

, This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license, © 2019 by the authors. Licensee MDPI