
HAL Id: hal-02613874
https://institut-agro-rennes-angers.hal.science/hal-02613874v2

Submitted on 12 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Spatial synchrony in the response of a long range
migratory species ( Salmo salar ) to climate change in

the North Atlantic Ocean
Maxime Olmos, Mark R Payne, Marie Nevoux, Etienne Prévost, Gerald

Chaput, Hubert Du Pontavice, Jérôme Guitton, Timothy Sheehan, Katherine
Mills, Etienne Rivot

To cite this version:
Maxime Olmos, Mark R Payne, Marie Nevoux, Etienne Prévost, Gerald Chaput, et al.. Spatial
synchrony in the response of a long range migratory species ( Salmo salar ) to climate change in
the North Atlantic Ocean. Global Change Biology, 2020, 26 (3), pp.1319-1337. �10.1111/gcb.14913�.
�hal-02613874v2�

https://institut-agro-rennes-angers.hal.science/hal-02613874v2
https://hal.archives-ouvertes.fr


This article has been accepted for publication and undergone full peer review but has not been through the 
copyediting, typesetting, pagination and proofreading process, which may lead to differences between this 
version and the Version of Record. Please cite this article as doi: 10.1111/GCB.14913

This article is protected by copyright. All rights reserved

DR. MAXIME  OLMOS (Orcid ID : 0000-0002-0425-0600)

DR. HUBERT  DU PONTAVICE (Orcid ID : 0000-0001-9571-0651)

Article type      : Primary Research Articles

Spatial synchrony in the response of a long range migratory species (Salmo 

salar) to climate change in the North Atlantic Ocean

Maxime Olmos1,2,#, Mark R. Payne3, Marie Nevoux1,2, Etienne Prévost2,4, Gérald Chaput5, Hubert 

Du Pontavice1,6, Jérôme Guitton1, Timothy Sheehan7, Katherine Mills8, and Etienne Rivot1,2,##

1 UMR ESE, Ecology and Ecosystem Health, Agrocampus Ouest, INRA, 35042 Rennes, France

2 Management of Diadromous Fish in their Environment, AFB, INRA, Agrocampus Ouest, UNIV 

PAU & PAYS ADOUR/E2S UPPA , Rennes, France.

3National Institute for Aquatic Resources, Technical University of Denmark (DTU-Aqua), 2800 

Kongens Lyngby, Denmark.

4ECOBIOP, INRA, Univ. Pau & Pays Adour / E2S UPPA, 64310 Saint-Pée-sur-Nivelle, France

5 Fisheries and Oceans Canada, 343 University Avenue, Moncton, NB, E1C9B6, Canada

6Nippon Foundation-Nereus Program, Institute for the Oceans and Fisheries, University of British 

Columbia, Vancouver, British Columbia, Canada

7Northeast Fisheries Science Center, National Marine Fisheries Service, 166 WaterStreet, Woods 

Hole, MA 02543, USAA
cc

ep
te

d 
A

rt
ic

le

https://doi.org/10.1111/GCB.14913
https://doi.org/10.1111/GCB.14913


This article is protected by copyright. All rights reserved

8Gulf of Maine Research Institute, 350 Commercial Street, Portland, ME 04101, USA

Corresponding authors: # olmosmaxim@gmail.com, ## etienne.rivot@agrocampus-ouest.fr

A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

ABSTRACT

A major challenge in understanding the response of populations to climate change is to separate 

the effects of local drivers acting independently on specific populations, from the effects of global 

drivers that impact multiple populations simultaneously and thereby synchronize their dynamics. 

We investigated the environmental drivers and the demographic mechanisms of the widespread 

decline in marine survival rates of Atlantic salmon (Salmo salar) over the last four decades. We 

developed a hierarchical Bayesian life cycle model to quantify the spatial synchrony in the marine 

survival of 13 large groups of populations (called stock units, SU) from two continental stock-

groupings (CSG) in North America (NA) and Southern Europe (SE) over the period 1971-2014. 

We found strong coherence in the temporal variation in post-smolt marine survival among the 13 

SU of NA and SE. A common North Atlantic trend explains 37% of the temporal variability of the 

survivals for the 13 SU and declines by a factor 1.8 over the 1971-2014 time series. Synchrony in 

survival trends is stronger between SU within each CSG. The common trends at the scale of NA 

and SE capture 60% and 42% of the total variance of temporal variations, respectively. Temporal 

variations of the post-smolt survival are best explained by the temporal variations of sea surface 

temperature (SST, negative correlation) and net primary production indices (PP, positive 

correlation) encountered by salmon in common domains during their marine migration. 

Specifically, in the Labrador Sea/Grand Banks for NA populations 26% and 24% of variance is 

captured by SST and PP, respectively and in the Norwegian Sea for SE populations 21% and 12% 

of variance is captured by SST and PP, respectively. The findings support the hypothesis of a 

response of salmon populations to large climate induced changes in the North Atlantic 

simultaneously impacting populations from distant continental habitats. 

Key words: Spatial covariation, climate change, stage-based life cycle model, marine survival, 

Atlantic salmon, environmentally driven changes, bottom-up, hierarchical Bayesian model
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1. INTRODUCTION

Understanding the response of populations to global changes, in terms of demography and 

adaptive capacity, is critical to support ecosystem-based management (Brown et al., 2011; 

Edwards, Beaugrand, Hays, Koslow, & Richardson, 2010; Harley et al., 2006; Stenseth, 2002). A 

major challenge to understanding the response of populations to environmental variations is to 

partition the effects of global drivers that likely impact multiple populations simultaneously and 

synchronize their dynamics from the effects of drivers acting locally on specific populations 

(Moran, 1953; Post & Forchhammer, 2002). This is also critical for a better understanding of the 

mechanisms affecting the resilience of populations to global change (Heino, 1998; Palmqvist & 

Lundberg, 1998).

Life cycle models that consider and incorporate the spatial and temporal heterogeneity of 

ecological mechanisms and demographic responses are useful for examining the effects of 

multiple factors that interact in a hierarchy of scales (Cunningham, Westley, & Adkison, 2018; 

Rochette, Le Pape, Vigneau, & Rivot, 2013; Stelzenmüller, Schulze, Fock, & Berkenhagen, 2011). 

When combined with the analysis of multiple populations, these models provide a powerful 

approach to partition the effects of factors impacting each population specifically from those 

affecting groups of populations simultaneously (Lahoz-Monfort et al. 2013; Walter et al. 2017). In 

addition, signals that arise from multiple population relationships are more likely to represent true 

biological processes rather than statistical flukes (Myers, Mertz, & Bridson, 1997; Soberon & 

Nakamura, 2009) and as a result can be more informative than separate analyses of single 

populations (Britten, Dowd, & Worm, 2016; Szuwalski, Vert-Pre, Punt, Branch, & Hilborn, 2015; 

Zimmermann, Claireaux, & Enberg, 2019).

Separating out the different scales of interactions of ecological processes driving population 

dynamics is particularly challenging in the case of highly migratory species, which can interact 

with a multitude of single and/or synergistic factors at different points in time and space during 

their life cycle. For instance, the life cycle of anadromous fish, such as salmonids, relies on 

population-specific freshwater habitats for reproduction and juvenile growth and marine habitats 

shared by multiple populations for feeding and maturation. This makes these species sensitive to 

multiple environmental and anthropic stressors acting at different spatial scales, with factors A
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operating at sea potentially having synchronizing effects on the dynamics of large groups of 

populations. For such species, identifying the space and time domains associated with specific life 

stages that are most susceptible to conditioning the population dynamics is a prerequisite to better 

understand population responses to global changes (Cunningham et al., 2018) and to support 

improved management decisions and actions at global and local scales. 

Atlantic salmon (Salmo salar) is one of the most emblematic fish in the Atlantic Ocean. The 

species reproduces in a large number (~ 2000) of rivers distributed in the eastern (Europe) and 

western (North America) regions of the North Atlantic. Due to its highly evolved homing ability, 

the species is structured into individual river populations, with specific and variable freshwater 

habitat environments. During the freshwater phase, the population dynamics are conditioned by 

local habitat quality and trophic resources (Elliott, 2001; Jonsson, Jonsson, & Hansen, 1998; 

Milner et al., 2003). During the marine phase, populations originating from distant continental 

habitats migrate to common feeding grounds in the North Atlantic, with major concentrations 

located off West Greenland, in the Labrador Sea, and the Faroes Islands and Norwegian Sea (Aas, 

Einum, Klemetsen, & Skurdal, 2010; D. H. Mills, 1989). In these aggregations at sea, they are 

exposed to common environmental marine conditions and fisheries. 

Atlantic salmon populations from North America and Europe have undergone a widespread 

decline in abundance over the last four decades (Chaput, 2012; ICES, 2017; Olmos et al., 2019), 

but the mechanisms responsible for these declines are still unclear. The broad scale pattern of 

decline has led to the hypotheses that major ecosystem changes in the North Atlantic Ocean are 

the main driver of these declines (Olmos et al., 2019). The mechanisms for this may include an 

indirect effect associated with an increase in sea temperatures (Beaugrand & Reid, 2012; 

Friedland, Moore, & Hogan, 2009; Jensen et al., 2012). A major trophic shift in the North Atlantic 

Ocean was documented in the early 1990’s with trophic level changes observed in the plankton 

communities upward to seabird populations (Beaugrand, Edwards, Brander, Luczak, & Ibanez, 

2008; Durant, Anker-Nilssen, & Stenseth, 2003; A. J. Pershing, Head, Greene, & Jossi, 2010) 

which was hypothesized to exert bottom up control via reductions in the abundances and the 

energetic value of prey across higher trophic levels (K. E. Mills, Pershing, Sheehan, & Mountain, 

2013; Otero et al., 2012; Renkawitz, Sheehan, Dixon, & Nygaard, 2015).  These changes may 

have been responsible for altered Atlantic salmon growth at sea and consequently survival through A
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size-dependent mortality (Friedland & Reddin, 2000; Gislason, Daan, Rice, & Pope, 2010; 

Peyronnet, Friedland, Maoileidigh, Manning, & Poole, 2007).

Broader scale analyses to date, however, suggest that despite the overall spatial coherence of the 

trends in abundances and survival rates observed throughout the North Atlantic, the annual and 

region specific variations between continental stock groups (CSG) in North America and Southern 

Europe and among populations within a CSG are large (Olmos et al., 2019). This may in part be 

explained by the diversity and complexity of migration routes at sea undertaken by populations 

originating from different areas of the North Atlantic. As such, it is challenging yet necessary to 

identify the space and time domains along the migration routes at sea where salmon are exposed to 

favorable and unfavorable ecosystem conditions that may strongly affect their survival.

Although the early Atlantic salmon post-smolt marine phase is often suggested as a critical stage 

for survival (Friedland et al. 2003a, 2005, 2000; Thorstad et al. 2012; Chaput et al. 2018), the 

environmental conditions encountered later in the first year at sea can also be important (Friedland 

et al., 2009; Friedland & Reddin, 2000; K. E. Mills et al., 2013). In addition, the factors involved 

in the declines in survival may differ between populations. Growth variations during the first 

summer at sea have been hypothesized as critical for the survival of SE populations (Friedland et 

al. 2008; Friedland et al. 2014; McCarthy, Friedland, and Hansen 2008; Peyronnet et al. 2007; 

Haugland et al. (2006) and Jensen et al. (2012)). In contrast, variations in predation pressure in 

early spring have been hypothesized to be the main driver of early post-smolt survival in southern 

NA populations (Friedland et al., 2014). 

The mechanisms involved at various spatial and temporal scales, and the degree to which these 

mechanisms and hence the responses are shared between populations remain largely unclear. A 

simultaneous and joint analysis of multiple populations throughout the Atlantic Ocean within a 

unified framework is needed to improve our understanding of the response of Atlantic salmon 

populations to changes in the marine ecosystem. 

In this paper, we rely on the modelling framework developed by Olmos et al. (2019) to explore 

how environmental conditions encountered by Atlantic salmon in different space and time 

domains along the marine migration routes may contribute to the variations of marine survival in 

Europe and North America. Olmos et al. (2019) developed an age and stage-based model for the 

collective analysis of the dynamics of thirteen geographically proximate Atlantic salmon stock A
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units (SU) from the eastern NA and SE CSG, and applied this model to data over the period 1971-

2014. The model provides a framework to quantify the spatial coherence in the temporal variation 

of the post-smolt marine survival rates and in the proportion of fish maturing after one winter at 

sea (1SW) in a hierarchy of spatial scales across the North Atlantic. Olmos et al. (2019) reported 

on the strong coherence in temporal variation of marine survivals among the 13 stock units of 

Southern Europe and North America, represented by a collective decline in the marine survival 

over the 1971-2014 time series. The results also provided evidence of covariation among 

geographically proximate stock units, with the strength of the covariation that increases when 

going down to spatial scale, thus suggesting the intricate influence of drivers acting at a hierarchy 

of spatial scale. 

Here, by taking advantage of the flexibility of the hierarchical model structure, we first extend the 

modelling framework developed by Olmos et al. (2019) by explicitly modeling temporal variation 

in post-smolt survival as the sum of trends in a hierarchy of spatial scales across global to local 

SU-specific areas. This allows the investigation of the degree of synchrony in Atlantic salmon 

post-smolt survival and explicitly quantifies the amount of variance that is captured by trends at 

various spatial scales. Second, we investigate whether the temporal variation in the marine 

survival can be explained by environmental variation encountered by salmon during the early 

post-smolt marine phase when salmon use specific transit habitat, or during the later phase of the 

first year at sea when salmon of different areas aggregate at common feeding areas. We conducted 

an extensive review of the literature on post-smolt migration routes to define the space-time 

domains associated with the early marine phase (spatially specific to each SU or to small groups of 

SU with proximate freshwater habitat) and late phase of the first year at sea (feeding areas 

common to large groups of SU). We then assessed the relationships between the temporal 

variations of marine survival and environmental covariates defined in those space-time domains 

including sea surface temperatures, primary production indices, and large scale climate indices. 

Our prediction was that the environmental conditions encountered in the common feeding areas 

should explain the greatest part of the synchronous signal observed between the SUs, while 

environmental conditions encountered during the early marine phase in transit habitat would not 

explain the broader scale responses of these salmon populations. 
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2. MATERIALS AND METHODS

2.1 General Model Outline 

Below we provide the main outlines of the model. Further details can be found in Olmos et al. 

(2019). 

The model is an age- and stage-based life cycle model (Fig. 1) that formulates the dynamics of all 

SU in a single hierarchical framework. The spatial structure of the model is unchanged from 

Olmos et al. (2019). The model considers thirteen stock units that each define assemblages of 

river-specific Atlantic salmon populations reproducing in the respective North American (NA) and 

Southern European (SE) CSG. The NA CSG consists of 6 SU (indexed by r = 1,…,6). The SE 

CSG consists of 7 SU (indexed by r = 7,…,13) (Fig. 2).

The Atlantic salmon from a SU are considered to form a single homogeneous group with similar 

life history and migration routes at sea. Juvenile salmon produced in each SU migrate to the sea as 

smolts after 1 to 6 years in freshwater, with the proportions at age varying among SUs. The model 

draws on explicit hypotheses about the migration routes at sea that generate spatial segregation in 

salmon populations (Fig. 1 and 2). All salmon from NA and SE migrate from their specific coastal 

area to reach a common feeding ground in the Labrador Sea and the Norwegian Sea, respectively. 

After one winter spent at sea, some salmon mature and return to their natal river to spawn while 

non-maturing salmon migrate to West Greenland. The different SU in the model present two 

levels of aggregation (Fig. 1). During the first months at sea, post-smolts of different SU are 

assumed to occupy spatially different transit habitats. In the later phase of the first year at sea, they 

migrate to a shared feeding area common to all SU of the same CSG, and where they are exposed 

to high seas fisheries operating on mixed SU.

The model is formulated in a Bayesian hierarchical state-space framework (Parent and Rivot, 

2012; Rivot et al., 2004) that incorporates stochasticity in population dynamics as well as 

observation errors. It assimilates information from the time series of data (1971 to 2014) collated 

by ICES WGNAS (Working Group on North Atlantic Salmon; ICES, 2015, 2017). These consist 

of: (i) annual estimates of the number of mature anadromous Atlantic salmon that return to each of A
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the 13 SU, by 1SW and 2SW maiden sea-age classes; (ii) annual estimates of homewater catches 

for each SU by sea-age class; (iii) annual estimates of commercial catches for the mixed stock 

fisheries at sea operating sequentially on combinations of SU, and data on the SU origin of the 

catches (but see Olmos et al. 2019 for further details). 

The model was primarily designed to estimate the abundance of salmon at various life stages 

along the life cycle, the exploitation rates in the fisheries, and two key parameters of the marine 

phase: the post-smolt marine survival rates (from out-migrating smolts to the 1 January of the first 

winter at sea, referred as the Pre Fishery Abundance stage, or PFA) and the proportions of fish 

maturing as 1SW, for each year and each SU. It explicitly considers temporal covariation in those 

two key demographic parameters. For the present analysis, we keep the original covariation model 

for the proportion of fish maturing as 1SW as defined by Olmos et al. (2019), with temporal 

variations of this parameters modeled as a multivariate random walk in the logit scale. Random 

variations are drawn from multivariate Normal distribution with a 13×13 variance-covariance 

matrix.  The model for temporal variation in post-smolt marine survival, which is the focus of this 

paper, is modified from Olmos et al. (2019), and temporal variation is modelled through an 

explicit decomposition of terms associated with the various spatial scales, as detailed hereafter. 

2.2 Investigating the spatial synchrony in marine survival

2.2.1 Hierarchical decomposition of the temporal variations of post-smolt survival 

Different models for the temporal variation of post-smolt marine survival are tested (Supp. Mat 

S1). In the reference model M1 (eq. (1), (2) and Tables 1, S1.1), temporal variation in post-smolt 

survival is explicitly written as the sum of three components to partition out the survival signal at 

three scales: a term capturing the synchronous signal between all SU, a term capturing the 

synchronous signal within each CSG, and a term for the remaining temporal variability specific to 

each SU. 

Following the methodology developed by Grosbois et al. (2009) and Lahoz-Monfort et al. (2011, 

2013), post-smolt survival  (in the logit scale) at year t in SU r within the CSG g (g=NA or SE) 𝜃𝑡,𝑟

is modelled as the sum of independent normally distributed random terms: A
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(1) ,𝑙𝑜𝑔𝑖𝑡(𝜃𝑡,𝑟) =  𝛽𝑟 + 𝛿𝑡 + 𝛼𝑔𝑡 + 𝜀𝑡,𝑟

with  an intercept that is constant for all years and ( ) that are identically and 𝛽𝑟 𝛿𝑡,𝛼𝑔𝑡, 𝜀𝑡,𝑟

independently normally distributed random terms:

(2) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡, { 𝛿𝑡 ~ 𝑁(0,𝜎2
𝛿)

𝛼𝑔𝑡 ~ 𝑁(0,𝜎2
𝛼𝑔)

𝜀𝑡,𝑟~ 𝑁(0,𝜎2
𝜀𝑟)

Time series of  and  characterize the synchronous part of the signal at two spatial 𝛿𝑡 (𝛿𝑡 + 𝛼𝑔𝑡)

scales. The ’s capture the trend that is common to all SU over the North Atlantic Ocean. The 𝛿𝑡 𝛿𝑡

’s characterize the amount of between year variation synchronous to all SU within each + 𝛼𝑔𝑡

CSG, g=NA and g=SE.  are remaining random variations specific to each SU that characterize 𝜀𝑡,𝑟

the asynchronous part of the signal. Priors on parameters are all weakly informative (Table 1).

Two embedded models of lower complexity were then considered (Supp. Mat. S1). Since Olmos 

et al. (2019) have shown that there are correlations between SU, models with no correlations 

between SU were not examined further. Analyses that considered environmental covariates were 

based on the most complete model M1. 

2.2.2 Quantifying synchrony

The different random terms ( ) in eq. (1) are independent, therefore the total between year 𝛿𝑡,𝛼𝑔𝑡, 𝜀𝑡,𝑟

variance of the post-smolt survival time series of each SU ( , denoted , is the sum 𝑙𝑜𝑔𝑖𝑡(𝜃𝑡,𝑟)) 𝑉𝑡𝑜𝑡𝑟

of the variance of the random terms: 

(3) 𝑉𝑎𝑟𝑡𝑜𝑡𝑟 = 𝜎2
𝛿 + 𝜎2

𝛼𝑔 + 𝜎2
𝜀𝑟 

where g=NA for r=1,…,6 and g=SE for r = 7,…,13. 
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Synchrony at different spatial scales was quantified by calculating the Inter-Class Correlation 

(ICC) based on the ratio of inter-annual variances (Grosbois et al., 2009; Lahoz-Monfort et al., 

2013, 2011). For each SU r, we calculated  

(4) 𝐼𝐶𝐶𝛿𝑟 =  
𝜎2

𝛿

𝑉𝑎𝑟𝑡𝑜𝑡𝑟
 

(5) .𝐼𝐶𝐶𝑔𝑟 =  
𝜎2

𝛿 + 𝜎2
𝛼𝑔

𝑉𝑎𝑟𝑡𝑜𝑡𝑟

where g=NA for r=1,…,6 and g=SE for r = 7,…,13.  quantifies the amount of variance of the 𝐼𝐶𝐶𝛿𝑟

survival time series that is captured by the global trend component  A large  means that the 𝛿. 𝐼𝐶𝐶𝛿𝑟

variance of the shared component ( , synchronous part of the signal) is large relative to the total 𝜎2
𝛿 

variance of the time series.  quantifies the amount of variance that is captured by the 𝐼𝐶𝐶𝑔𝑟

continental trend g to which the SU r belongs.

We then calculated synchrony indices as the average of ICC values: 

(6) ,𝐼𝐶𝐶𝛿 = 𝑚𝑒𝑎𝑛𝑎𝑙𝑙 𝑟(𝐼𝐶𝐶𝛿𝑟)

(7) ,𝐼𝐶𝐶𝑁𝐴 = 𝑚𝑒𝑎𝑛𝑎𝑙𝑙 𝑟 𝑖𝑛 𝑁𝐴(𝐼𝐶𝐶𝑁𝐴𝑟
) 

(8) .𝐼𝐶𝐶𝑆𝐸 = 𝑚𝑒𝑎𝑛𝑎𝑙𝑙 𝑟 𝑖𝑛 𝑆𝐸(𝐼𝐶𝐶𝑆𝐸𝑟
)

 is the amount of temporal variance that is synchronous among all SU and provides a global 𝐼𝐶𝐶𝛿

index of synchrony over the entire set of SU in both NA and SE CSG.  and  are the 𝐼𝐶𝐶𝑁𝐴 𝐼𝐶𝐶𝑆𝐸

fraction of the between year variance accounted for by the NA (  and SE (  𝛿 + 𝛼𝑁𝐴) 𝛿 + 𝛼𝑆𝐸)

synchronous components, respectively. They provide an index of synchrony within each CSG. 
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2.2.3 Testing the influence of environmental covariates in different space-time domains along 

the migration routes

The model was used to investigate correlations between times trends in post-smolt survival and 

environmental covariates integrated over different space-time domains occupied by salmon along 

the migration routes (Fig. 2). Specially, we considered two types of domains: (i) domains visited 

during the early post-smolt phase as transit habitat specific to each SU (or to groups of geographic 

proximate SUs); (ii) domains visited during the late post-smolt phase that are common to all SU of 

the same CSG (Fig. 2 and 3).

In this section, we first describe the methods used to define the space-time domains. Then, we 

present the ecological hypotheses tested and the associated environmental variables integrated 

over those different domains. Finally, we detail the statistical method used to quantify the amount 

of variance of the temporal variations of post-smolts survival that is captured by the covariates in 

the different space-time domains.

2.2.3.1 Defining specific and common CSG space-time domains

We conducted an extensive review of the literature to define the key space-time domains occupied 

by post-smolts over their marine phase across the North Atlantic Ocean (Fig. 2; Sup. Mat. S2). 

Two types of space-time domains were defined. Specific domains are transit habitat occupied by 

post-smolts during their first three months at sea of migration from the estuarine and coastal areas 

to the common feeding area (Fig. 2, zones 1 to 9, Table S2.1, Fig S2.1). These domains are 

specific to each SU or to small groups of geographic proximate SU (Fig. 3 and Fig. S2.1). 

Common CSG domains are space-time domains corresponding to the habitat occupied by salmon 

in the later phase of the first year at sea (Fig. 2 domains A and B) and associated to feeding areas 

common to all SU within the same CSG (Fig. 3). 

The only exception is for the Southwest Iceland SU, which presents different migrations from the 

other SU from SE CSG. Salmon from Iceland reach the sea later, in June, and do not migrate to 

the Norwegian Sea (Guðjónsson, Einarsson, Jónsson, & Guðbrandsson, 2015). Consequently, for 

the Southwest Iceland SU, the same spatial limits are defined for the transit and common domains 

(Fig. 2 and Table S2.1).A
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2.2.3.2 Integrating environmental variables over space-time domains

The sea surface temperature (SST) and primary production (PP) were averaged over the defined 

space-time domains (Fig. 3) and introduced as explanatory variables in the life cycle model to 

assess the extent to which the temporal variations in the post-smolt survival could be explained by 

environmental variations encountered in the specific or common domains occupied by salmons 

during the first year at sea. We also examined the influence of two large scale climate indices, the 

Atlantic Multidecadal Oscillation (AMO) and the North Atlantic Oscillation Index (NAOI) to 

assess their influence on the temporal variations in the post-smolt survival. 

Sea Surface Temperature (SST)

Ocean warming is one of the major effects of climate change on marine ecosystems.  An increase 

in seawater temperature may affect survival differently (negative or positive) through direct or 

indirect effects. 

The direct physiological effect of an increase in temperature is difficult to predict as it can be 

positive or negative, depending on the range of the temperature change relative to the species’ 

optima and tolerance. Atlantic salmon is an ectothermic species with a range of preferred 

temperatures at sea between 2°C and 14°C (Holm, 2000; David G. Reddin & Schearer, 1987), 

with the highest post-smolt captures being realized in temperatures between 4-10°C (D. G. Reddin 

& Friedland, 1993). Then, by directly increasing metabolism, an increase in temperature should 

increase growth potential of salmon, and in turn may have a positive effect on marine survival 

provided that foraging resources are available in sufficient quantity (Cunningham et al., 2018; 

Siegel, McPhee, & Adkison, 2017). By contrast, an increase of temperature well above the 

optimum could have a negative effect on growth and marine survival. However, based on the 

literature, we rather expect negative indirect effects of an increase in seawater temperature on both 

growth and survival, through bottom-up control of food resources available for salmon during the 

first year at sea (Beaugrand & Reid, 2012; Friedland et al., 2009; Jensen et al., 2012). 

SSTs were used to calculate the seawater temperature in each space-time domain and derived from 

the HadISST1 datasets (See Sup. Mat. S3). Standardized anomalies of SST for each space-time 

domain z (as defined in Table S2.1) and year t, denoted  were calculated as:𝑆𝑆𝑇 ∗
𝑧,𝑡 A
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(9) 𝑆𝑆𝑇 ∗
𝑧,𝑡 =  

𝑆𝑆𝑇𝑧,𝑡 ― 𝑆𝑆𝑇
𝜎𝑆𝑆𝑇

  

where is the SST averaged over the space-time domain z (averaged over month and space) 𝑆𝑆𝑇𝑧,𝑡 

for a particular year t,  is the SST averaged over spatial and temporal (months) limits covered 𝑆𝑆𝑇

by all specific and common domains, and overall years t, and  is the standard deviation 𝜎𝑆𝑆𝑇

calculated from the between year variability of the SST averaged over spatial and temporal 

(months) limits covered by all specific and common domains. Note that with this method, the 

anomalies are calculated relative to SST averaged over all space-time domains (both common and 

specific) and covering both NA ad SE post-smolt habitat. Therefore, the contrast in absolute value 

and temporal (between year) variance between the type of domains (specific versus common) and 

between the two CSG (NA and SE) is conserved. 

Primary Production (PP)

PP was considered as indicator of the ocean production which determines the prey availability for 

salmon at sea and consequently expected to be positively correlated to post-smolt survival.

PP data are derived from the Earth System Model) developed by the Geophysical Fluid Dynamic 

Laboratory (GFDL-ESM2M, Dunne et al., 2012) (see Sup. Mat. S3 for more details). 

Standardized anomalies of PP ( ) were calculated following the same approach as SST. 𝑃𝑃 ∗
𝑧,𝑡

However, to match with the months of phytoplankton bloom, PP was integrated over the two 

months April-May in both specific and common domains.

Atlantic Multidecadal Oscillation (AMO)

The AMO is a low-frequency and basin-wide climate index reflecting sea surface temperature 

variability over the last century (Alheit, Drinkwater, & Nye, 2014; Enfield, Mestas-Nunez, 

Trimble, & others, 2001). 

Previous studies have reported on a negative correlation between temporal variations of salmon 

abundance and the AMO in both North America (Crozon et al., 2005; K. E. Mills et al., 2013) and 

in Southern Europe (Beaugrand et al., 2012). Friedland et al., (2014) highlighted a differential A
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response of salmon abundances from North America and Southern Europe to the AMO. Based on 

these publications, we expect the positive AMO to negatively impact post-smolt survival but with 

potentially different strength for NA and SE CSGs.

The effect of AMO on post-smolt survival is included using the average monthly value over the 

entire post-smolt phase (May-December); data from 1975 to 2012 were considered (see Sup. Mat. 

S3 for more details).

North Atlantic Oscillation Index (NAOI)

We used the winter NAOI (mean from December to March) as the NAOI is strongly associated 

with climatic conditions during the winter (Sup. Mat. S3). Previous studies have shown weak 

correlations between NAOI and salmon abundance (K. E. Mills et al., 2013; Beaugrand and Reid, 

2003, 2012). Our prediction is that high winter NAOI should be associated with good feeding 

conditions because of positive temperature anomalies, and thus be positively correlated with post-

smolt survival. However, because NAOI described different conditions in North America and 

Europe, our expectation is that the temporal variation of NAOI will affect the two CSGs 

differently. 

2.2.4 Quantifying the influence of environmental variables in the different space-time 

domains

We developed a variant of the variance analysis method from Grobois et al., (2009) and Lahoz-

Monfort et al., (2011, 2013) to quantify the contribution of each covariate in the different space-

time domains to the temporal and spatial variations of post-smolt survival. This also allows 

quantifying the contribution of covariates in generating synchrony at various spatial scales.

Preliminary analysis showed that the time series of environmental variables exhibited an important 

level of correlation, both between variables of different nature (i.e. variations of SST, PP, AMO 

and NAOI are not independent) and between the different space-time domains for the same 

covariate. Hence, the influence of each type of covariate was considered separately, and for the 

same covariate, the influence in the different space-time domains at different scales was also 

considered separately.A
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Time series of environmental covariates ( , defined at different spatial scales k (specific or 𝑋𝑘𝑡)

common CSG domains) were considered as an additional factor in model M1: 

(11) 𝑙𝑜𝑔𝑖𝑡(𝜃𝑡,𝑟) =  𝛽𝑟 + 𝛿𝑡 + 𝛼𝑔𝑡 + 𝜀𝑡,𝑟 + 𝛾𝑘 × 𝑋𝑘𝑡      

where k refers to the specific or common domains, and  is the coefficient describing the 𝛾𝑘

influence of covariate  on post-smolt survival (two separate models were built for the two 𝑋𝑘

spatial scales). The  were drawn a priori in a non-informative Uniform prior distribution. 𝛾𝑘

For covariates SST and PP at the scale of specific domains, different coefficients  for each SU 𝛾𝑟

were considered. When covariates are considered at the scale of a common CSG domain, two 

coefficients  and  were considered for the influence on NA and SE, respectively. Because 𝛾𝑁𝐴 𝛾𝑆𝐸

our expectation is that the effects of AMO and NAOI could be different between the two CSGs, 

two coefficients  and  were considered for the influence on NA and SE, respectively. Table 𝛾𝑁𝐴 𝛾𝑆𝐸

2 sums up the hypotheses tested and associated model configurations that included environmental 

covariates.

Contribution of the covariates to the temporal variability of post-smolt survival

For each covariate considered independently, models were run with (Cov) and without the effects 

of covariates (NoCov, all  fixed to 0, equivalent to model M1). For each time series of 𝛾 𝑙𝑜𝑔𝑖𝑡(𝜃𝑡,𝑟)

, the percentage of between year variance captured by covariate can therefore be estimated by the 

ratio :𝐶𝑟

(12) 𝐶𝑟 = 1 ―
𝑉𝑎𝑟𝑡𝑜𝑡𝑟(𝐶𝑜𝑣)  

𝑉𝑎𝑟𝑡𝑜𝑡𝑟(𝑁𝑜𝐶𝑜𝑣) 

where corresponds to the total inter-annual variance for the model without 𝑉𝑎𝑟𝑡𝑜𝑡𝑟(𝑛𝑜𝐶𝑜𝑣)  

covariates as defined in eq. (3), and is the total inter-annual variance in the model 𝑉𝑎𝑟𝑡𝑜𝑡𝑟(𝐶𝑜𝑣) 

with covariates (i.e., the residual variance not captured by the covariate). The average percentage 

of variance captured by a given covariate (denoted  ) is then calculated over all SU or over 𝐶𝑇𝑂𝑇A
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SU within each CSG. A high value of  corresponds to a high contribution of the covariates in  𝐶𝑇𝑂𝑇

the trends of post-smolt survival.

Contribution of environmental covariates to generate synchrony or asynchrony in post-

smolt survival

To quantify the contribution of environmental covariates in generating synchrony or asynchrony in 

survival, we also assessed the amount of variance captured by the covariates at different levels of 

the spatial hierarchy:  

(13) ∆𝛿 = 1 ―
𝜎2

𝛿(𝐶𝑜𝑣) 

𝜎2
𝛿(𝑁𝑜𝐶𝑜𝑣)

 (14) , for g = NA or SE∆𝛼𝑔 = 1 ―
𝜎2

𝛿(𝐶𝑜𝑣) + 𝜎2
𝛼𝑔

(𝐶𝑜𝑣)

𝜎2
𝛿(𝑁𝑜𝐶𝑜𝑣) + 𝜎2

𝛼𝑔
(𝑁𝑜𝐶𝑜𝑣)

 (15) , for r =1,…,13∆𝜀𝑟 = 1 ―
𝜎2

𝜀𝑟
(𝐶𝑜𝑣) 

𝜎2
𝜀𝑟

(𝑁𝑜𝐶𝑜𝑣)

, , and  quantify the contribution of environmental covariates to the between year variance ∆𝛿 ∆𝛼𝑔 ∆𝜀𝑟

at the global scale (general synchronous component), CSG-scale (synchronous component within 

a CSG) or local scale (asynchronous component), respectively.  and  are positive if the ∆𝛿 ∆𝑔

covariate acts as a synchronizing factor. Indeed, if the covariate captures part of the synchronous 

signal in components  or , the variance of the synchronous random terms in the model should be 𝛿 𝛼

lower when considering covariates (Table 2). Inversely, if  is positive, the variance of  ∆𝜀𝑟

asynchronous terms is greater when considering covariates, meaning that the covariate acts as an 

asynchronous agent (Table 2). 

A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

2.3 MCMC simulations and model checking

Bayesian posterior distributions were approximated using Monte Carlo Markov Chain (MCMC) 

methods using Nimble (https://r-nimble.org) (de Valpine et al., 2017). The Nimble code for our 

model is available on GitHub: https://github.com/MaxOlmos/SALMOGLOB-Life-Cycle-Model. 

Two independent MCMC chains with dispersed initialization values were used. The level of 

autocorrelation of MCMC chains is very high (still significant at lag 30). The first 106 iterations 

were used as a burn-in period. To reduce the autocorrelation in the MCMC sample used for final 

inferences, one out of 30 iterations post burn-in was kept and the resulting sample of 30,000 

iterations per chain was used to characterize the posterior distribution. Convergence was assessed 

using the Gelman-Rubin statistic (Brooks & Gelman, 1998) as implemented in the R Coda 

package (gelman.diag()). 

Following the methodology developed in Olmos et al. (2019), the model fit to each data source 

was assessed by checking that the 90% credibility envelope of the posterior predictive distribution 

of each variable contained the observation. In addition, Bayesian p-values calculated from chi-

square discrepancy tests (Gelman et al., 2014a) were calculated to check the ability of the model to 

replicate a posteriori data similar to those observed. The likelihood and the core structure of the 

population dynamic is the same as in Olmos et al. (2019), and changes in the latent model 

structure do not affect the way the model fits the data. As in Olmos et al. (2019), posterior 

predictive distributions show that the model fits well to all observations, and posterior predictive 

checks do not indicate strong inconsistencies between the model a posteriori and the data. Those 

results are not developed further in this paper (see Olmos et al. (2019) for more details).

2.4 Model comparisons

We compared the parsimony of models using the W-AIC criterion. The WAIC is appropriate to 

compare hierarchical models of any structure fitted to the same data sets (Gelman, 2014a; Hooten 

& Hobbs, 2015; Watanabe, 2013). It can be considered as a generalization of the Deviance 

Information Criterion (Gelman, 2014a; Vehtari, Gelman, & Gabry, 2017) and has the advantage of 

being directly related to the posterior predictive ability of the model. Using the common A
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convention for information criteria on the deviance scale, differences of W-AIC between models 

can be roughly interpreted according to the following rules of thumb: a difference of 1-2 units 

offers little to no support in favor of a particular model; a difference of between 4 and 7 units 

offers considerable support for the model with the lowest W-AIC; and a difference of >10 units 

offers full support for the model with the lowest W-AIC (Burnham and Anderson, 2002;  Gelman 

et al. 2014a; Gelman et al. 2014b).

3. RESULTS

3.1 Quantifying spatial synchrony at a hierarchy of spatial scales

3.1.1 Model evaluation

Model M1, which explicitly partitions the signal into a common trend plus two separate trends for 

each CSG, appears to be the best descriptor of the spatial coherence between SU and was therefore 

retained in the subsequent analyses (Supp. Mat. S1). 

3.1.2 Spatial synchrony in post-smolt survival

Results show a strong synchrony in the temporal variations of post-smolt marine survival between 

all SU, but with a higher coherence within CSG (Fig. 4). The average  relative to the global 𝐼𝐶𝐶𝛿

scale component across all SU is 37%, indicating a strong synchrony between all time series of 

survival and the common trends. Time series of post-smolt survival show a consistent decline 

across the 13 SU over the study period. The global scale component exhibits a decrease in survival 

by a factor 1.8 (natural scale, not shown) with a strong drop in 1987, followed by a slight increase 

in the early 2000s, before slightly declining again until 2012 (Fig. 4a). The degree of synchrony 

with the common trend is variable depending on the SU.  are higher for SU within the SE 𝐼𝐶𝐶𝛿𝑟

CSG (Fig. 4b; average value of  across all SU in SE =45%) than within the NA CSG 𝐼𝐶𝐶𝛿𝑟A
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(average value of  across all SU in NA = 24%), indicating that the SU in the SE CSG are 𝐼𝐶𝐶𝛿𝑟

more strongly correlated with the global scale component than the SU in the NA CSG. 

Temporal variation in post-smolt marine survival within each CSG shows a stronger coherence 

than among SU of the two CSGs, especially as the NA CSG presents a higher synchrony (𝐼𝐶𝐶𝑁𝐴

 (Fig. 4d) than the SE CSG (  (Fig, 4f). Common CSG trends (calculated as = 60%) 𝐼𝐶𝐶𝑆𝐸 = 42%)

( ) revealed differences between NA and SE CSG (Fig. 4c and 4e), however, both exhibit 𝛿𝑡 + 𝛼𝑔𝑡)

an overall declining trend, characterized by a sharp decline in the 1990s. The survival in the NA 

component decreases over years with a strong decline by a factor 3 (natural scale, not shown) 

during 1985 to 1995 (Fig. 4c) while SE shows a smaller decline by a factor 1.9. The survival in the 

SE component also slightly increases between 2002 and 2007 although it remains relatively stable 

in the NA component after the decline of the 1990s. 

Within NA, Quebec ( =98%), Labrador ( =70%) and Newfoundland ( =65%) are 𝐼𝐶𝐶𝑔𝑟 𝐼𝐶𝐶𝑔𝑟 𝐼𝐶𝐶𝑔𝑟

the SU that are the most strongly correlated with the global trend for NA (Fig. 4d). Within SE, the 

strongest correlation between SU and the common trend is obtained for England & Wales (𝐼𝐶𝐶𝑔𝑟

=98%), Eastern ( =58%) and Western Scotland ( =55%) (Fig. 4f). Some SU like US in 𝐼𝐶𝐶𝑔𝑟 𝐼𝐶𝐶𝑔𝑟

NA or N-Ireland in SE have specific trends that contrast with the average CSG trend. Logically 

they show weaker ICC indices ( =30% for US; =18% for N-Ireland). N-Ireland 𝐼𝐶𝐶𝑔𝑟 𝐼𝐶𝐶𝑔𝑟

exhibited a higher inter-annual variability compared to the SE common component (Fig. 4e). US 

presents a stronger decline than the NA component (Fig. 4c).
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3.2 Influence of environmental covariates in different space-time 

domains along the migration routes

3.2.1 Time series of covariates in the different space-time domains

Time series of anomalies of covariates SST and PP exhibit some temporal variations over the 

period considered (Fig. 5). 

SST anomalies are in the same range between the specific and the common domains (Fig 5a and 

5b). Time series of SST exhibit an overall increase over the period. Inter-annual variance of SST 

anomalies is generally higher in the specific than in the common CSG domains. In NA, the 

increase in SST is higher in the common CSG domains than in the specific ones (Fig. 5a). In SE, 

the drop of SST observed in the common CSG domain at the beginning of the 1990’s is stronger 

than in the specific domains (Fig. 5b). In NA, the time series of SST in the different space-time 

domains show large temporal fluctuations, all marked by a strong increase starting at the 

beginning of the 1990s, and again after 2003, following a decline between 1998 and 2003 (Fig. 

5a). The time series of SST for the SE CSG show different signals than in NA, marked by a drop 

of SST between 1992 and 1995, and temperatures that have decreased since 2009 (Fig. 5b). 

Trends in time series of PP are weaker than for SST and slightly decreasing (Fig. 5a to 5d).  The 

decline of PP is slightly stronger in NA than in SE. By contrast with SST, PP anomalies calculated 

in the specific domains are much higher than in the common CSG domains. 

AMO shows a multidecadal variability and a marked increase over the time-series, especially 

since the beginning of the 1990’s (Fig. 5e). NAOI exhibits strong inter-annual variability, with a 

general decline after 1990 and with considerable negative anomalies in 1996 and 2010 (Fig. 5f).
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3.2.2 Model comparisons

Difference in W-AIC between model M1 and models with effects of covariates are weak and do 

not allow us to select one particular model (Table S4.1). Model comparisons show that the 

temporal variations of environmental covariates experienced by post-smolts in the common CSG 

domains better explain the variance in post-smolt survivals than environmental covariates in the 

specific space-time domains. The models considering a different effect of AMO and NAOI for 

each CSG are supported by the data and present low W-AIC values, similar to the ones of 

environmental covariates defined in the common CSG domains.

3.2.3 Influence of PP and SST in the specific space-time domains

Overall, temporal variations of SST and PP in the specific space-time domains occupied by post-

smolts during the first three months of marine migration only explain a low part of the temporal 

variance of marine survival and the sign of their influence is not consistent across SU.

The absolute values of regression coefficients of SST and PP anomalies strongly differ (Fig. 6a 

and 6b). However, no conclusions can be drawn from those differences as the method used to 

calculate anomalies, anomalies of PP and SST in the specific time-space domains are not centered 

on 0 and do not have the same variance. Still, the sign of regression coefficient and the amount of 

variance explained by both covariates can be compared. 

Overall, the signs of the coefficient of correlations between post-smolt marine survival and SST 

and PP anomalies considered in specific domains do not indicate a consistent direction of the 

effect across SUs. The 95% posterior credibility intervals for most coefficients include zero, 

suggesting a limited influence of the variations in PP or SST in specific space-time domains on the 

marine survival rate. However, some exceptions are observed. In SE CSG, temporal variation of 

the marine survival in Ireland, Northern Ireland, Eastern Scotland, and England and Wales are 

negatively correlated with those of SST. In average, the SST coefficients associated with the 

northernmost SU of both CSGs (e.g. Southwest Iceland and Labrador to a lesser extend) are 

positive, whereas the majority of those associated with the southernmost SU are negative (e.g. 

Scotia-Fundy, US, Ireland, Northern Ireland, England and Wales, Eastern Scotland). This result 

suggests that the effect of SST could be different depending on the latitude, with a positive effect A
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of increasing SST for SU in the northernmost post-smolt habitats, and a negative effect on SU 

with the southernmost post-smolt habitats. On average, PP and SST integrated over the specific 

space-time domains only captured a small percentage of the total variance, with SST being slightly 

more influential than PP  ( 0.2% and 11% for PP and SST, respectively) of the temporal 𝐶𝑇𝑂𝑇 =

variations of marine survival in each SU (red bars Fig. 6g and 6h).

Both covariates integrated over the specific domains act mainly as asynchronizing agents, 

meaning that the covariates capture part of the variance of the asynchronous component of the 

survival rate but not of the common trends. PP contributes only to the asynchronous component 

(Fig. 6g, orange bars). SST also essentially contributes to the asynchronous components, although 

some part of the synchronous components is explained by temporal variation of SST in the 

specific domains. SST in the specific space-time domains explains 33% of the variance of the 

global component (blue bars, ; Fig. 6h), 29% of the variance of the SE CSG component (green ∆𝛿

bars, ; Fig. 6h), but 0% of the variance of the NA CSG component (green bars, ; Fig. 6h). ∆𝛼𝑆𝐸 ∆𝛼𝑁𝐴

The local (asynchronous) influence of PP is highest for Newfoundland ( 22%), France (∆𝜀𝑁𝐹𝐷𝐿 =

12%), Scotia-Fundy ( 10%), and explains less than 10% for the Gulf, US, Quebec, ∆𝜀𝐹𝑅 = ∆𝜀𝑆𝐹 =

Ireland, Eastern Scotland, and Northern Ireland (Fig. 6g). The effect of SST is highest for South 

West Iceland ( 86%), England and Wales ( 25%), and France ( 19%), but ∆𝜀𝑆𝑊.𝐼𝐶 = ∆𝜀𝐸𝑊 = ∆𝜀𝐹𝑅 =

explains only a low proportion of the specific variance for the other SU (Fig. 6h).
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3.2.4 Influence of environmental PP and SST in the common CSG domains

SST and PP integrated over space-domains shared by all SU within the same CSG later in the first 

year at sea explain a larger proportion of the temporal variation of marine survival than variables 

integrated in specific space-time domains. Also, the signs of the coefficients of correlation 

between marine survival and variables indicate a consistent direction of the effect across SU. 

The regression coefficients associated with PP integrated over common CSG domains for NA and 

SE are positive (Fig. 6c), whereas they are negative for SST (Fig. 6d). The coefficients associated 

with the two covariates are stronger for NA than for SE; the 95% credible intervals do not include 

zero for SST in NA and SE CSG and for PP in NA CSG, and 75% credible interval do not include 

zero for PP in SE CSG. Temporal variations of SST capture a greater proportion of the variance (

16%) of the marine survival than does PP ( 10%) (Fig. 6j and Fig. 6i, respectively). 𝐶𝑇𝑂𝑇 𝐶𝑇𝑂𝑇

SST and PP integrated over common CSG domains act as synchronizing agents for the temporal 

variability of post-smolt marine survival. SST accounts for 42% of the variance of the global trend 

(blue bar, ; Fig. 6.j), and PP about 19% (blue bar, ; Fig. 6i). When downscaling at the scale of ∆𝛿 ∆𝛿

CSG trends ( ), SST integrated over the common CSG domains accounts for 26% and 21% of 𝛿 + 𝛼

between year variance of the common trends for NA and SE, respectively (green bars, ∆𝛼𝑁𝐴 𝑎𝑛𝑑 

; Fig. 6j). PP accounts for 24% and 12% of between year variance of the common trends for ∆𝛼𝑆𝐸

NA and SE respectively (green bars, ; Fig. 6i). ∆𝛼𝑁𝐴 𝑎𝑛𝑑 ∆𝛼𝑆𝐸

3.2.5 Influence of large scale environmental indices: AMO and NAOI

The AMO is negatively correlated with the trends in post-smolt survivals (Fig. 6e), but the 

magnitude of the effect is higher for NA than for SE. The AMO index captures a high average 

amount of variance ( 13%, red bar; Fig. 6k) and acts as a synchronizing agent of post-smolt 𝐶𝑇𝑂𝑇 =

survival. The effect of AMO accounts for 29% ( ), 26% ( ) and 21% ( ) of the global-∆𝛿 ∆𝛼𝑁𝐴 ∆𝛼𝑆𝐸

scale, the NA CSG-scale, and the SE CSG scale, respectively and does not account for a specific 

scale component, except for England and Wales ( 14%) (Fig. 6k).∆𝜀𝐸𝑊 =A
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The NAO index is not correlated to post-smolt survival (Fig. 6f) and captures an insignificant part 

of the variance at any spatial scale (Fig. 6l).

4. DISCUSSION

Understanding the demographic and ecological mechanisms shaping the response of populations 

to climate change is a prerequisite for a science-based management and conservation ecology 

(Koenig, 1999). A particularly challenging issue is to separate out the effects of factors acting at 

various stages and spatial scales. This paper addressed this issue with the Atlantic salmon as a case 

study. We elaborate on a hierarchical life cycle model developed by Olmos et al. (2019) to analyze 

the dynamics of 13 large groups of populations that sequentially occupy different habitats in the 

North Atlantic Ocean, with different populations occupying distinct habitats during the first period 

of the marine phase and sharing common habitats later on.  The analyses provide a new 

quantification of the spatial synchrony in post-smolt marine survival examined at a hierarchy of 

spatial scales, from a basin scale (North Atlantic) to more local (national or regional) scales, and 

quantifies the amount of temporal variation in the post smolt survival that is captured by 

environmental changes at these spatial scales. To this end, we integrated explicit hypotheses on 

migration routes to test how spatial and temporal variations in the marine environment shape the 

covariation in post-smolt survival rate. 

4.1 Geography of covariation of post-smolt marine survival

We partitioned the temporal variations of marine survival for 13 SU into three components that 

capture (i) coherence of the signal between all SU (global scale), (ii) within each CSG (NA or SE), 

and (iii) for each SU specifically (asynchronous components). 

Consistent with results of Olmos et al. (2019), we found strong coherence in the temporal 

variation of post-smolt marine survival among the 13 SU of NA and SE, characterized by a 

decline in the common trend for the 13 SU over the 1971-2014 time series. A
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Results also highlight an increased coherence in temporal variation of post-smolt survival at finer 

spatial scales. Synchronized dynamics are stronger among SU within the same CSG than between 

SU of different CSGs. The common trends at the scale of NA and SE capture 60% and 42% of the 

total variance of the temporal variations, respectively, with the remaining part of the variability 

being explained by local SU variations. Within the same CSG, synchrony is higher for 

geographically proximate SU, most likely explained by the similarity in post-smolt habitat and 

migration routes at sea. Specifically, in the NA CSG, Labrador, Newfoundland and Quebec are 

closer to the common feeding grounds in the Labrador Sea and Grand Banks. Fish of those SU are 

likely to have similar migration routes during the first year at sea, which would therefore explain 

the strong coherence in temporal variations of marine survival. Similarly, in SE, post-smolt 

survival rates of SU with closed migration routes to the common feeding grounds in the 

Norwegian Sea, such as Eastern Scotland, Western Scotland and England and Wales (the most 

abundant salmon rivers, the Tyne, Dee and Lune, are in the North of England) are correlated. 

4.2 Influence of environment variables in space-time domains along 

the migration routes

The geographic pattern of covariation in post-smolt survival suggests a response to spatially 

correlated environmental drivers (Moran effect; Liebhold et al., 2004; Stenseth, 2002; Walter et 

al., 2017). When arriving at sea, fish occupy different habitats sequentially along their migration 

routes and at varying levels of population aggregation. We tested if the spatial patterns of 

synchronicity in marine survival rate can be explained by temporal variations of environmental 

conditions (SST and PP) encountered by the fish in those different habitats.

To support this, we developed an extensive review of the available information on migration 

timing and migration routes from the mouth of the estuary in spring to the first over-wintering 

stage at the end of the following autumn. Based on this review, we defined two types of space-

time domains: (i) associated with the early phase of the marine life (first two months after the 

smolts migration); (ii) associated with the later phase of the first year at sea and corresponding to 

common areas where salmon of different origins mixed to feed. 
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Results support the hypothesis of synchronous variations of post-smolt survival driven by 

environmental factors affecting salmon in the feeding grounds where multiple populations from a 

same CSG forage together in late summer/early autumn, in the Labrador Sea/Grand Banks for NA 

CSG and the Norwegian Sea for SE CSG. Temporal variations of the post-smolt marine survival 

are best explained by temporal variations of SST (negative correlations) and PP (positive 

correlations) in those space-time domains than in the specific ones.

Our results are not fully consistent with Friedland et al. (2014) who found that warm temperatures 

in early spring negatively affected the recruitment index in NA, whereas recruitment in SE was 

negatively correlated with warmer SST in late summer. However, our inferences are based on a 

model that considers the population dynamics of all 13 SU in the North Atlantic Ocean in a single 

unified modelling framework. By contrast, data limitation and insufficient spatial coverage in 

Friedland et al. (2014) may have hampered their investigation of the spatial synchrony in a 

hierarchy of spatial scales. The authors compared proxies of marine productivity for NA and SE 

based on heterogeneous data sources between areas (global catch index for NA CSG and an index 

of marine survival based on tag returns from the North Esk River (UK) for SE CSG) and their 

correlative approach was not based on explicit hypotheses about salmon migration routes. Hence 

the lack of correlation between spring SST and marine productivity for SE CSG may come from a 

mismatch between the habitat occupied by salmon and the space-time domains where SST was 

considered. 

Although previous papers reported some weak degree of association between NAOI and Atlantic 

salmon dynamics (Beaugrand & Reid, 2012; K. E. Mills et al., 2013), no relationship between 

winter NAOI and post-smolt survival was found in the present study. One reason might be that the 

relationship between NAOI and salmon is not homogeneous between the two sides of the North 

Atlantic Ocean, and even across a latitudinal gradient within a given CSG. For instance, strong 

positive phases of the NAOI are associated with below-normal temperatures in SE and in the 

North of the Labrador region, but with above-normal temperature in Northern Europe and in the 

eastern coast of North America (Hurrell, Kushnir, Ottersen, & Visbeck, 2003): the effect of NAOI 

on salmon may therefore not be uniform across SUs or CSGs.
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4.3 Indirect growth-dependent mechanisms are likely involved

Thermal conditions encountered by salmon in their open ocean feeding grounds are likely to 

influence salmon survival. However, it is still unclear if salmon are influenced by direct effects of 

warming (by increasing energy expenditure and metabolism), or by indirect effects such as 

suboptimal food availability, predation, or migration timing.  

The direct effect of SST warming appears less likely responsible for the observed patterns. 

Ectothermic animals such as salmon have both their metabolic demand and growth potential 

increasing with temperature (Siegel et al., 2017). Growth variations during the post-smolt phase 

were hypothesized as being important for survival (Friedland et al., 2008, 2014; McCarthy et al., 

2008). As SST indices in the open ocean feeding grounds remained within the optimal range 

(between 7°C-10,5°C) of Atlantic salmon (Holm, 2000; Reddin and Schearer, 1987), the observed 

SST warming over the time period studied is not likely to have a direct effect on marine survival, 

which is contrary to negative regression coefficients as well as the overall declining pattern of 

marine survival. 

The negative correlation between the temporal variation of SST, and the positive correlation of PP 

with the common trends of marine survival rate rather suggest an indirect effect of SST warming 

acting through bottom-up trophic mechanisms. The Norwegian Sea and the Labrador Sea/Grand 

Banks, which are major feeding grounds for SE and NA CSG populations, are sensitive areas to 

climate change in the North Atlantic (Beaugrand et al., 2008). Our findings are consistent with a 

major trophic shift in the North Atlantic documented in the early 1990s, with reported changes 

across trophic levels from phytoplankton communities to seabird populations (Beaugrand et al., 

2008; Beaugrand, Luczak, & Edwards, 2009; Durant et al., 2003) . Subsequent reduction of the 

abundance and the energetic quality of prey may have altered salmon growth at sea (K. E. Mills et 

al., 2013; Otero et al., 2012; Renkawitz et al., 2015) and consequently survival through size-

dependent mortality (Friedland & Reddin, 2000; Gislason et al., 2010; Peyronnet et al., 2007). 

Antagonistic effects of direct and indirect mechanisms may also act in synergy. Indeed, although 

warmer temperature may imply a higher and faster growth potential, sustaining higher metabolic 

rates also requires higher food availability. Therefore, under limited resource conditions, warmer 

temperatures may well lead to a decrease in growth (and then of survival) because energetic 

demand might outweigh energy intake (Daly & Brodeur, 2015; Siegel et al., 2017).A
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Another possible indirect negative effect of warmer temperature could be increasing metabolic 

costs and mortality through reduced concentrations of dissolved oxygen. Deutsch et al. (2015) 

highlighted that the combined effect of dissolved oxygen loss and warming would reduce the 

metabolic index (ratio of O2 supply to an organism’s resting O2 demand) through the upper water 

column (0 to 400m) by ~20% globally and by ~50% in mid-latitude Northern Hemisphere oceans. 

Investigating the combined effect of temperature warming and oxygen loss on Atlantic salmon 

habitat would be worth considering in the future.

4.4 Local specificities in temporal variations

Beyond the general patterns, our results reveal some differences in the temporal variations of post-

smolt survival and response to environmental variations between CSG and between SU. Some of 

these can be explained by local specificities but are mostly the consequences of complex yet 

unexplained mechanisms. 

Results revealed a higher decline in post-smolt survival, a stronger coherence between SU and a 

stronger effect of PP and SST in North America than in Southern Europe. This might result from 

the particularly fast warming of the ocean in the Northwest Atlantic, especially in the Labrador 

Sea/Grand Banks (Belkin, 2009; A. Pershing, Dayton, Franklin, & Kennedy, 2018; Taboada & 

Anadón, 2012). Additionally, weaker synchrony observed in SE may be explained by the diversity 

of marine environments and associated growth conditions encountered during the post-smolt 

migration leading to the feeding areas in the Norwegian Sea. Post-smolt diet reported by Haugland 

et al. (2006) shows high spatial and temporal variability in terms of prey composition, with diet 

dominated by blue whiting in the Shelf Edge Current in the west of the United Kingdom, and by 

sandeel and herring in the North Sea and the Norwegian Sea. Such a high portfolio of potential 

prey depending on the area may reduce the synchronizing effect of environmental fluctuations. 

The sign of the correlations between post-smolt survival and SST integrated over the specific 

time-space domains occupied by salmon during the first three months of marine migration are not 

consistent across SUs. Specifically, a negative correlation between post-smolt survival of Scotia-

Fundy, US, Ireland, Northern Ireland and England and Wales and SST integrated over specific 

domains may result from particularly warm temperatures in those space-time domains. In A
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particular, SST in the Gulf of Maine has increased faster than 99% of the global ocean (A. J. 

Pershing et al., 2015), which could explain why US and Scotia-Fundy SU present the strongest 

declines in post-smolt survivals.

A negative correlation between PP integrated over the specific space-time domains and survival in 

the Labrador and Newfoundland and France SU was not expected. Salmon from the Labrador and 

Newfoundland SU have a shorter migration to the common feeding grounds (Bley & Moring, 

1988; Friedland, 1994) and may directly migrate to the common domains to feed. The spatial 

resolution of the specific space-time domain defined for the France SU, that encompasses the 

Biscay Bay, the North Sea and the Western coast of UK, could be too large. Populations from the 

North (Brittany and Normandy) and from South West of France may have different migration 

routes. Mixing different ecosystems with different possible trophic dynamics may have blurred the 

signal (Jensen et al., 2012; Haugland et al., 2006).

4.5 Limits and future prospects

In this study, we only considered a limited set of environmental covariates, namely SST, PP, and 

large-scale climate proxies, AMO and winter NAOI. The limited set of tested variables result from 

a trade-off between hypothesis testing about the mechanisms that drive post-smolt survival and the 

availability of data over the required spatial and temporal scales.

Extending the approach to the Northern Europe (NE) SU would also allow extending the gradient 

of environmental variation and may contribute to an even better understanding of the response of 

Atlantic salmon populations to large scale ecosystem changes. Stock assessment data for NE SU is 

only available for a shorter time series (starting in 1995 only; ICES, 2015). Nevertheless, it is 

characterized by a general decline in productivity over the period, suggesting a likely synchrony 

among the three CSG over the North Atlantic. Incorporating this data into the model would allow 

for extending the modelling framework to all SU in the North Atlantic. 

Because of data limitations, the model structure forces all temporal variations in survival to occur 

between the smolt migration and the Pre-Fishery stage. Indeed, as already discussed by Massiot-

Granier et al. (2015) and Olmos et al. (2019), the data currently available do not allow partitioning 

out the temporal variations of the marine mortality that occur at different periods of the marine A
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phase. To better understand the effect of environmental variations on marine survival, more data 

would be needed to partition out the natural morality along the migration routes. 

We also assumed that the space-time domains sequentially occupied by salmon during the first 

year at sea have not changed over the 1971 to 2014 period. However, both the timing of smolt 

migration (Otero et al., 2012; Satterthwaite et al., 2014), and the boundaries of favorable habitat at 

sea (Cheung et al., 2009; Poloczanska et al., 2013) have changed which may have altered salmon 

migration routes (Guðjónsson et al. 2015). In addition, spring plankton blooms and therefore the 

peak of higher trophic resources available for salmon may be advanced in the season and may 

occur in different places (Edwards et al., 2010; Malick, Cox, Mueter, Peterman, & Bradford, 2015; 

Parmesan & Yohe, 2003), thus potentially creating a mismatch between salmon migration and 

available resources (Cushing, 1990). 

Last, our findings have direct management implications. Indeed, post-smolt marine survival is one 

of the main factors controlling Atlantic salmon stock productivity. Accurately accounting for and 

forecasting temporal variation in the post-smolt marine survival will provide for a more robust 

stock assessment and the provision of multi-year catch advice for the mixed-stock fisheries 

occurring on these SUs within the North Atlantic (ICES, 2019; Vert-pre et al. 2013; Britten et al. 

2016). Also, developing models that account for the effect of environmental covariates on 

forecasting is critical to be able to integrate climate predictions scenarios in those forecasts. In this 

perspective, building models that appropriately consider how environmental changes can impact 

groups of populations simultaneously or differently is therefore critical to develop appropriate 

management measures at various spatial scales.   
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Tables

Table 1: Prior distributions used for the parameters of the hierarchical structures. N refers to a normal distribution and U 

refers to a uniform distribution.

SPATIAL COMPONENT
PARAMETERS

r= 1:13

g= NA, SE

Prior distribution

𝜇 ~𝑁(0,𝜎 = 10)
Specific Intercept

𝜎𝛽 ~𝑈(0,5)

Standard deviation

Specific component 
𝜎𝜀𝑟 ~𝑈(0,5)

Standard deviation

CSG-specific component 
𝜎𝛼𝑔 ~𝑈(0,5)

Standard deviation

Global component 
𝜎𝛿 ~𝑈(0,5)
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Table 2: Summary of the hypotheses tested and the associated model configurations that included environmental covariates.

SPATIAL 

SCALE 

k

TEMPORAL 

PERIOD OF 

THE POST-

SMOLT 

PHASE

COVARIATE
𝑿𝒕

MODELS

Covariate 

contributes 

to the 

decline in 

post-smolt-

survival if

Covariate acts 

as 

synchronizing 

agent at the 

global scale if

Covariate act 

as 

synchronizing 

agent at the 

CSG scale if

Covariate act as 

asynchronizing 

agent if

PPInfluence of 

covariates in the 

specific space-

time domains

Spring of the 

first year at sea
SST

𝒍𝒐𝒈𝒊𝒕(𝜽𝒕,𝒓) =  𝜷𝒓 +  𝜹𝒕 + 𝜶𝒈𝒕 +  𝜺𝒕,𝒓 +  𝜸𝒓 × 𝑿𝒓𝒕

𝑤𝑖𝑡ℎ 𝛾𝑟~ 𝑈( ― 6,6)

r= 1:13

PPLate summer 

of the first 

year at sea
SST

AMO

Influence of the 

covariates in the 

common space-

time domains
Large Scale 

Indices NAO

𝒍𝒐𝒈𝒊𝒕(𝜽𝒕,𝒓) =  𝜷𝒓 +  𝜹𝒕 + 𝜶𝒈𝒕 +  𝜺𝒕,𝒓 +  𝜸𝒈 × 𝑿𝒈𝒕

𝑤𝑖𝑡ℎ 𝛾𝑔~ 𝑈( ― 6,6)

g = NA or SE

𝐶𝑇𝑂𝑇 > 0 ∆𝛿 > 0 ∆𝛼 > 0     ∆𝜀𝑟 > 0
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Legends

Figure 1: Structure of the age- and stage-based life cycle model and covariation structure among the 13 stock units (adapted 

from Olmos et al. 2019). Sources of covariation include: 1) covariation in the time series of post-smolt survival and 

proportion maturing as 1SW (depending on the model structure M1, M2 and M3; see Table 1); 2) Covariation through 

fisheries operating on mixtures of SU at sea. Red boxes refer to NA SU (I = 1,…,6), blue boxes refer to SE SU (j = 1,…,7) and 

purple boxes refer to both NA and SE SU. 

Figure 2: Location of the 13 stock units and specific and common space-time domains considered in North Atlantic. Stock 

units of North America: NFLD = Newfoundland, GF = Gulf, SF = Scotia-Fundy, US = USA, QB = Quebec, and LB=Labrador. 

Stock units in Southern Europe: IR = Ireland, E&W = UK(England and Wales), FR = France, E.SC = UK(Eastern Scotland), 

W.SC = UK(Western Scotland), N.IR = UK(Northern Ireland), and SWIC= Southwest Iceland). Specific and common CSG 

space-time domains are in orange and green respectively. See Table S2.1 for correspondence between space-time domains 

and SU.

Figure 3. Theoretical representation of the hierarchy of space-time domains. Orange: Space-time domains defined as transit 

habitat occupied by post-smolts during their first two months at sea (specific domains). Green: Space-time domains 

corresponding to the habitat occupied by salmon in the later phase of the first year at sea, associated with feeding areas, 

common to all SU within the same CSG (Labrador Sea and the Norwegian Sea for NA and SE CSG respectively) (common 

domain).

Figure 4: Left panel: Large scale component trends (medians of marginal posterior distributions and 95% credibility 

interval (shaded area)) and individual time-series medians for each SU estimated. (a) Global component and the 13 SU (c) 

NA component and NA SU (e) SE component and SE SUs. Right panel: Synchronicity indices ICC quantifying the proportion 

of variance captured by the average trend for each SU within the global component (b), the NA CSG (d) and the SE CSG (f). 

The average ICC (ICCm) is indicated by the thick line. The thick line corresponds to the median of the ICCm and the shaded 

area represent the 95% credibility interval. 

Figure 5: Time series of environmental covariates: Sea Surface Temperature in NA (a) and SE (b); Primary Production in NA 

(c) and SE (d). For (a) to (d): time series defined in the common space-time domains (green color) and time series defined 

in the specific space-time domains (color range from pink to maroon); (e) standardized Atlantic Multidecadal Oscillation 

(AMO); and (f) standardized North Atlantic Oscillation Index (NAOI).

Figure 6: Regression coefficients ((a)-(f)) and fraction of temporal variation of post-smolt survival accounted for by effect of 

environmental covariates ((g)-(l)) defined in the specific space-time domains ((a) & (g)) (PP), ((b) & (h)) (SST), in the CSG 

space-time domains ((c) & (i)) (PP), ((d) & (j)) (SST) ((e) & (k)) (AMO), ((f) & (l)) (NAOI). Left panels: marginal posterior 

distributions for the regression coefficients. Thick point is the median, and the different thicknesses of lines represent the 

50%, the 75% and the 95% posterior credibility intervals. Right panels: fraction of variation accounted for by the 

covariates.  is the average fraction captured by the covariates when considered over all stock units (red). Blue, green, 𝐶𝑇𝑂𝑇A
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and orange barplots represent the contribution of environmental covariates to the between year variance at the global-

scale ( , CSG-scale (  and specific scale (  ) respectively. ∆𝛿) ∆𝛼𝑔) ∆𝜀𝑟
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