G. Von-wricke, Über eine Methode zur Erfassung der ökologischen Streubreite in Feldversuchen, Z. Planznezücht, vol.47, pp.92-96, 1962.

K. W. Finlay and G. Wilkinson, The analysis of adaptation in a plant-breeding programme, Aust. J. Agric. Res, vol.14, pp.742-754, 1963.

M. Brancourt-hulmel, V. Biarnès-dumoulin, and J. Denis, Points de repère dans l'analyse de la stabilité et de l'interaction génotype-milieu en amélioration des plantes, vol.17, pp.219-246, 1997.

J. B. Denis, Two way analysis using covariates1, Stat. A J. Theor. Appl. Stat, vol.19, pp.123-132, 1988.

J. Vargas, F. Van-eeuwijk, K. D. Sayre, and P. M. Reynolds, Interpreting treatment x environment interactin in agronomy trials, Agron. J, vol.93, pp.949-960, 2001.

M. K. Van-ittersum, K. G. Cassman, P. Grassini, J. Wolf, P. Tittonell et al., Yield gap analysis with local to global relevance-A review, Filed Crop. Res, vol.143, pp.4-17, 2013.

, FAOSTAT Production/Yield Quantities of Rapeseed in World, p.20, 2019.

A. S. Bouchet, A. Laperche, C. Bissuel-belaygue, C. Baron, J. Morice et al., Genetic basis of nitrogen use efficiency and yield stability across environments in winter rapeseed, BMC Genet, vol.17, p.131, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01462774

D. He, E. Wang, J. Wang, and J. M. Lilley, Genotype × environment × management interactions of canola across China: A simulation study, Agric. For. Meteorol, vol.247, pp.424-433, 2017.

M. J. Moghaddam and S. S. Pourdad, Genotype × environment interactions and simultaneous selection for high oil yield and stability in rainfed warm areas rapeseed (Brassica napus L.) from Iran, Euphytica, vol.180, pp.321-335, 2011.

H. Zhang, J. D. Berger, and S. P. Milroy, Genotype×environment interaction studies highlight the role of phenology in specific adaptation of canola (Brassica napus) to contrasting Mediterranean climates, Filed Crop. Res, vol.144, pp.77-88, 2013.

M. J. Metzger, R. G. Bunce, R. H. Jongman, C. A. Mücher, and J. W. Watkins, A climatic stratification of the environment of Europe, Glob. Ecol. Biogeogr, vol.14, pp.549-563, 2005.

B. Habekotté, Evaluation of seed yield determining factors of winter oilseed rape (Brassica napus L.) by means of crop growth modelling, Filed Crop. Res, vol.54, pp.137-151, 1997.

L. Champolivier and A. Merrien, Effects of water stress applied at different growth stages to Brassica napus L. var. oleifera on yield, yield components and seed quality, Eur. J. Agron, vol.5, pp.153-160, 1996.

V. Parnaudeau, M. Jeuffroy, J. Machet, R. Reau, and C. Bissuel, Methods for determining the nitrogen fertiliser requirements of some major arable crops in France, Proceedings of the International Fertiliser Society, pp.1-26, 2009.

J. Rémy and J. Hébert, Le devenir des engrais azotés dans le sol, Acad. l'Agric. Fr, vol.63, pp.700-714, 1977.

C. Colnenne, J. Meynard, R. Reau, E. Justes, and A. Merrien, Determination of a Critical Nitrogen Dilution Curve for Winter Oilseed Rape, Ann. Bot, vol.81, pp.311-317, 1998.

P. D. Lancashire, H. Bleiholder, B. Van-den, T. Langelüddeke, P. Stauss et al., A uniform decimal code for growth stages of crops and weeds, Ann. Appl. Biol, vol.119, pp.561-601, 1991.

E. Weber and H. Bleiholder, Explanations of the BBCH decimal codes for the growth stages of maize, rape, faba beans, sunflowers and peas-with illustrations, Gesunde Pflanz, vol.42, pp.308-321, 1990.

B. Gabrielle, P. Denoroy, G. Gosse, E. Justes, and M. N. Andersen, Development and evaluation of a CERES-type model for winter oilseed rape, Filed Crop. Res, vol.57, pp.95-111, 1998.

H. L. Hebinger and . Colza;-editions-france-agricole, , 2013.

P. Leterme, Modelisation De La Croissance Et De La Production Des Siliques Chez Le Colza D'hiver (Brassica napus L

I. Paris-grignon, , 1985.

A. Jullien, A. Mathieu, J. M. Allirand, A. Pinet, P. De-reffye et al., Characterization of the interactions between architecture and sourcesink relationships in winter oilseed rape (Brassica napus) using the GreenLab model, Ann. Bot, vol.107, pp.765-779, 2011.
URL : https://hal.archives-ouvertes.fr/halsde-00613649

, Météo France Données Quotidiennes Du Modèle De Simulation Des Schémas De Surface, 2016.

A. Bruand, O. Duval, and I. Cousin, Estimation des propriétés de rétention en eau des sols à partir de la base de données SOLHYDRO: Une première proposition combinant le type d'horizon, sa texture et sa densité apparente, Étude Gest. Des Sols, vol.11, pp.323-334, 2004.

J. Fan, B. Mcconkey, H. Wang, and H. Janzen, Root distribution by depth for temperate agricultural crops, Filed Crop. Res, vol.189, pp.68-74, 2016.

M. Lacoste, V. L. Mulder, A. C. Richer-de-forges, M. P. Martin, and D. Arrouays, Evaluating large-extent spatial modeling approaches: A case study for soil depth for France, Geoderma Reg, vol.7, pp.137-152, 2016.

R. G. Allen, L. S. Pereira, D. Raes, and M. Smith, Crop evapotranspiration-Guidelines for computing crop water requirements -FAO Irrigation and drainage paper 56, Irrig. Drain, pp.1-15, 1998.

W. Weymann, U. Böttcher, K. Sieling, and H. Kage, Effects of weather conditions during different growth phases on yield formation of winter oilseed rape, Filed Crop. Res, vol.173, pp.41-48, 2015.

R. A. Fischer, Number of kernels in wheat crops and the influence of solar radiation and temperature, J. Agric. Sci, vol.105, pp.447-461, 1985.

A. Baux, J. Wegmüller, and A. Holzkämper, Exploring Climatic Impact on Oilseed Rape Yield in Switzerland, Procedia Environ. Sci, vol.29, 2015.

J. H. Ward, Hierarchical grouping to optimize an objective function, J. Am. Stat. Assoc, vol.58, pp.236-244, 1963.

R. Development-core and . Team, R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing, 2017.

S. Wold, C. Albano, W. J. Dunn, K. Iii;-esbensen, S. Hellberg et al., Pattern Recognition: Finding and Using Regularities in Multivariate Data, Proceedings of the IUFoST Conference, pp.20-23, 1982.

J. Martens and . Ed, , pp.147-188, 1983.

G. Palermo, P. Piraino, and H. D. Zucht, Performance of PLS regression coefficients in selecting variables for each response of a multivariate PLS for omics-type data, Adv. Appl. Bioinform. Chem, vol.2, pp.57-70, 2009.

M. Tenenhaus, La Régression PLS: Théorie Et Pratique; Editions Technip, 1998.

G. Schüürmann, R. U. Ebert, J. Chen, B. Wang, and R. Kühne, External validation and prediction employing the predictive squared correlation coefficient-Test set activity mean vs. training set activity mean, J. Chem. Inf. Model, vol.48, pp.2140-2145, 2008.

J. P. Gauchi and P. Chagnon, Comparison of selection methods of explanatory variables in PLS regression with application to manufacturing process data, Chemom. Intell. Lab. Syst, vol.58, pp.171-193, 2001.

G. Sanchez, Plsdepot: Partial Least Squares (PLS) Data Analysis Methods, R package version 0.1.17, p.22, 2012.

W. J. Krzanowski and Y. T. Lai, A Criterion for Determining the Number of Groups in a Data Set Using Sum-of-Squares Clustering, Biometrics, vol.44, 1988.

S. Lê, J. Josse, and F. Husson, FactoMineR: A Package for Multivariate Analysis, J. Stat. Softw, vol.25, pp.1-18, 2008.

F. Husson, S. Lê, and J. Pagès, Computer Science and Data Analysis Series Exploratory Multivariate Analysis by Example Using R, 2017.

J. Chandler, L. Corbesier, P. Spielmann, J. Dettendorfer, D. Stahl et al., Modulating flowering time and prevention of pod shatter in oilseed rape, Mol. Breed, vol.15, pp.87-94, 2005.

M. E. Ferreira, J. Satagopan, B. S. Yandell, P. H. Williams, and T. C. Osborn, Mapping loci controlling vernalization requirement and flowering time in Brassica napus, Theor. Appl. Genet, vol.90, pp.727-732, 1995.

C. C. Sheldon, E. J. Finnegan, D. T. Rouse, M. Tadege, D. J. Bagnall et al., Control of Flowering By Vernalization, Curr. Opin. Plant Biol, vol.3, pp.418-422, 2000.

M. Tadege, C. C. Sheldon, C. A. Helliwell, P. Stoutjesdijk, E. S. Dennis et al., Control of flowering time by FLC orthologues in Brassica napus, Plant J, vol.28, pp.545-553, 2001.

M. J. Morrison, Heat stress during reproduction in summer rape, Can. J. Bot, vol.71, pp.303-308, 1993.

S. V. Angadi, H. W. Cutforth, P. R. Miller, B. G. Mcconkey, M. H. Entz et al., Response of three Brassica species to high temperature stress during reproductive growth, Can. J. Plant Sci, vol.80, pp.693-702, 2000.

L. W. Young, R. W. Wilen, and P. C. Bonham-smith, High temperature stress of Brassica napus during fowering reduces micro-and megagametophyte fertility, induces fruit abortion, and disrupts seed production, J. Exp. Bot, vol.55, pp.485-495, 2004.

W. F. Nuttal, A. P. Moulin, and L. J. Townley-smith, Yield Response of Canola to Nitrogen, Phosphorus, Precipitation, and Temperature, Agron. J, vol.84, pp.765-768, 1992.

C. E. Parisot-baril and . De,

U. Paris-sud, , 1992.

W. Yan, Analysis and Handling of G × E in a Practical Breeding Program, Crop Sci, vol.56, pp.2106-2118, 2016.