J. A. Aguilar-martinez, C. Poza-carrion, and P. Cubas, Arabidopsis BRANCHED1 acts as an integrator of branching signals within axillary buds, Plant Cell, vol.19, pp.458-472, 2007.

L. Arrom and S. Munne-bosch, Sucrose accelerates flower opening and delays senescence through a hormonal effect in cut lily flowers, Plant Science, vol.188, pp.41-47, 2012.

J. Balla, P. Kalousek, V. Reinohl, J. Friml, and S. Prochazka, Competitive canalization of PIN-dependent auxin flow from axillary buds controls pea bud outgrowth, The Plant Journal, vol.65, pp.571-577, 2011.

F. Barbier, J. E. Lunn, and C. A. Beveridge, Ready, steady, go! A sugar hit starts the race to shoot branching, Current Opinion in Plant Biology, vol.25, pp.39-45, 2015.

F. Barbier, T. Peron, M. Lecerf, M. D. Perez-garcia, Q. Barriere et al., Sucrose is an early modulator of the key hormonal mechanisms controlling bud outgrowth in Rosa hybrida, Journal of Experimental Botany, vol.66, pp.2569-2582, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01378956

F. F. Barbier, E. A. Dun, S. C. Kerr, T. G. Chabikwa, and C. A. Beveridge, An update on the signals controlling shoot branching, Trends in Plant Science, vol.24, pp.220-236, 2019.

C. A. Beveridge, G. M. Symons, and C. Turnbull, Auxin inhibition of decapitation-induced branching is dependent on graft-transmissible signals regulated by genes rms1 and rms2, Plant Physiology, vol.123, pp.689-697, 2000.

J. Booker, S. Chatfield, and O. Leyser, Auxin acts in xylem-associated or medullary cells to mediate apical dominance, Plant Cell, vol.15, pp.495-507, 2003.

N. Braun, A. De-saint-germain, J. P. Pillot, S. Boutet-mercey, M. Dalmais et al., The pea TCP transcription factor PsBRC1 acts downstream of strigolactones to control shoot branching, Plant Physiology, vol.158, pp.225-238, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01019430

P. B. Brewer, E. A. Dun, R. Y. Gui, M. G. Mason, and C. A. Beveridge, Strigolactone inhibition of branching independent of polar auxin transport, Plant Physiology, vol.168, pp.1820-1215, 2015.

Q. Y. Bu, T. X. Lv, H. Shen, P. Luong, J. Wang et al., Regulation of drought tolerance by the F-Box protein MAX2 in Arabidopsis, Plant Physiology, vol.164, pp.424-439, 2014.

S. Cerasoll, A. Scartazza, E. Brugnoli, M. M. Chaves, and J. S. Pereira, Effects of partial defoliation on carbon and nitrogen partitioning and photosynthetic carbon uptake by two-year-old cork oak (Quercus suber) saplings, Tree Physiology, vol.24, pp.83-90, 2004.

T. G. Chabikwa, P. B. Brewer, and C. Beveridge, Initial bud outgrowth occurs independent of auxin flow out of buds, Plant Physiology, vol.179, pp.55-65, 2018.

S. P. Chatfield, P. Stirnberg, B. G. Forde, and O. Leyser, The hormonal regulation of axillary bud growth in Arabidopsis, The Plant Journal, vol.24, pp.159-169, 2000.

T. J. Chiou and D. R. Bush, Sucrose is a signal molecule in assimilate partitioning, Proceedings of the National Academy of Sciences, vol.95, pp.4784-4788, 1998.

M. G. Cline, Exogenous auxin effects on lateral bud outgrowth in decapitated shoots, Annals of Botany, vol.78, pp.255-266, 1996.

A. Corot, H. Roman, O. Douillet, H. Autret, M. D. Perez-garcia et al., Cytokinins and abscisic acid act antagonistically in the regulation of the bud outgrowth pattern by light intensity, Frontiers in Plant Science, vol.8, p.1724, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02053528

S. Crawford, N. Shinohara, T. Sieberer, L. Williamson, G. George et al., Strigolactones enhance competition between shoot branches by dampening auxin transport, Development, vol.137, pp.2905-2913, 2010.

A. De-saint-germain, G. Clave, M. A. Badet-denisot, J. P. Pillot, D. Cornu et al., An histidine covalent receptor and butenolide complex mediates strigolactone perception, Nature Chemical Biology, vol.12, pp.787-794, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02144648

M. A. Domagalska and O. Leyser, Signal integration in the control of shoot branching, Nature Reviews Molecular Cell Biology, vol.12, pp.211-221, 2011.

R. Drummond, B. J. Janssen, Z. W. Luo, C. Oplaat, S. E. Ledger et al., Environmental control of branching in Petunia, Plant Physiology, vol.168, pp.735-751, 2015.

E. A. Dun, A. De-saint-germain, C. Rameau, and C. A. Beveridge, Antagonistic action of strigolactone and cytokinin in bud outgrowth control, Plant Physiology, vol.158, pp.487-498, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01004268

E. A. Dun, A. De-saint-germain, C. Rameau, and C. A. Beveridge, Dynamics of strigolactone function and shoot branching responses in Pisum sativum, Molecular Plant, vol.6, pp.128-140, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01001611

J. B. Evers, A. R. Van-der-krol, J. Vos, and P. C. Struik, Understanding shoot branching by modelling form and function, Trends in Plant Science, vol.16, pp.464-467, 2011.

A. Eyles, E. A. Pinkard, N. W. Davies, R. Corkrey, K. Churchill et al., Whole-plant versus leaf-level regulation of photosynthetic responses after partial defoliation in Eucalyptus globulus saplings, Journal of Experimental Botany, vol.64, pp.1625-1636, 2013.

F. Fichtner, F. Barbier, R. Feil, M. Watanabe, M. G. Annunziata et al., Trehalose 6-phosphate is involved in triggering axillary bud outgrowth in garden pea, Pisum sativum L.). The Plant Journal, vol.92, pp.611-623, 2017.

C. M. Figueroa and J. E. Lunn, A tale of two sugars: trehalose 6-phosphate and sucrose, Plant Physiology, vol.172, pp.7-27, 2016.

E. Foo, E. Buillier, M. Goussot, F. Foucher, C. Rameau et al., The branching gene RAMOSUS1 mediates interactions among two novel signals and auxin in pea, Plant Cell, vol.17, pp.464-474, 2005.

V. Gomez-roldan, S. Fermas, P. B. Brewer, V. Puech-pages, E. A. Dun et al., Strigolactone inhibition of shoot branching, Nature, vol.455, pp.189-122, 2008.
URL : https://hal.archives-ouvertes.fr/hal-02183111

F. C. Gregory and J. A. Veale, A reassessment of the problem of apical dominance, Symposia of Society of Experimental Botany, vol.11, pp.1-20, 1957.

C. V. Ha, M. A. Leyva-gonzalez, Y. Osakabe, U. T. Tran, R. Nishiyama et al., Positive regulatory role of strigolactone in plant responses to drought and salt stress, Proceedings of the National Academy of Sciences, vol.111, pp.851-856, 2014.

A. Hayward, P. Stirnberg, C. Beveridge, and O. Leyser, Interactions between auxin and strigolactone in shoot branching control, Plant Physiology, vol.151, pp.400-412, 2009.

K. H. Jensen, W. Kim, N. M. Holbrook, and J. Bush, Optimal concentrations in transport systems, Journal of the Royal Society Interface, vol.10, 2013.

T. Kamada-nobusada, N. Makita, M. Kojima, and H. Sakakibara, Nitrogendependent regulation of de novo cytokinin biosynthesis in rice: the role of glutamine metabolism as an additional signal, Plant and Cell Physiology, vol.54, pp.1881-1893, 2013.

T. H. Kebrom, A growing stem inhibits bud outgrowth -the overlooked theory of apical dominance, Frontiers in Plant Science, vol.8, p.1874, 2017.

T. H. Kebrom, T. P. Brutnell, and S. A. Finlayson, Suppression of sorghum axillary bud outgrowth by shade, phyB and defoliation signalling pathways, Plant, Cell & Environment, vol.33, pp.48-58, 2010.

T. H. Kebrom, P. M. Chandler, S. M. Swain, R. W. King, R. A. Richards et al., Inhibition of tiller bud outgrowth in the tin mutant of wheat is associated with precocious internode development, Plant Physiology, vol.160, pp.308-318, 2012.

T. H. Kebrom and J. E. Mullet, Photosynthetic leaf area modulates tiller bud outgrowth in sorghum, Plant, Cell & Environment, vol.38, pp.1471-1478, 2015.

W. Kohlen, T. Charnikhova, Q. Liu, R. Bours, M. A. Domagalska et al., Strigolactones are transported through the xylem and play a key role in shoot architectural response to phosphate deficiency in nonarbuscular mycorrhizal host Arabidopsis, Plant Physiology, vol.155, pp.974-987, 2011.

S. Kushwah, A. M. Jones, and A. Laxmi, Cytokinin interplay with ethylene, auxin, and glucose signaling controls Arabidopsis seedling root directional growth, Plant Physiology, vol.156, pp.1851-1866, 2011.

S. Kushwah and A. Laxmi, The interaction between glucose and cytokinin signaling in controlling Arabidopsis thaliana seedling root growth and development, Plant Signaling & Behavior, vol.12, p.1312241, 2017.

R. Lemoine, L. Camera, S. Atanassova, R. Deedaldeechamp, F. Allario et al., Source-to-sink transport of sugar and regulation by environmental factors, Frontiers in Plant Science, vol.4, p.272, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00870386

F. Lestienne, B. Thornton, and F. Gastal, Impact of defoliation intensity and frequency on N uptake and mobilization in Lolium perenne, Journal of Experimental Botany, vol.57, pp.997-1006, 2006.

G. D. Li, L. N. Pan, K. Jiang, I. Takahashi, H. Nakamura et al., Strigolactones are involved in sugar signaling to modulate early seedling development in Arabidopsis, Plant Biotechnology, vol.33, pp.87-97, 2016.

L. Li and J. Sheen, Dynamic and diverse sugar signaling, Current Opinion in Plant Biology, vol.33, pp.116-125, 2016.

Y. H. Lin, M. H. Lin, P. M. Gresshoff, and B. J. Ferguson, An efficient petiolefeeding bioassay for introducing aqueous solutions into dicotyledonous plants, Nature Protocols, vol.6, pp.36-45, 2011.

E. S. Martin-fontecha, C. Tarancon, and P. Cubas, To grow or not to grow, a power-saving program induced in dormant buds, Current Opinion in Plant Biology, vol.41, pp.102-109, 2018.

M. G. Mason, J. J. Ross, B. A. Babst, B. N. Wienclaw, and C. A. Beveridge, Sugar demand, not auxin, is the initial regulator of apical dominance, Proceedings of the National Academy of Sciences, vol.111, pp.6092-6097, 2014.

J. Mathan, J. Bhattacharya, and A. Ranjan, Enhancing crop yield by optimizing plant developmental features, Development, vol.143, pp.3283-3294, 2016.

S. E. Morris, M. Cox, J. J. Ross, S. Krisantini, and C. A. Beveridge, Auxin dynamics after decapitation are not correlated with the initial growth of axillary buds, Plant Physiology, vol.138, pp.1665-1672, 2005.

D. Muller, T. Waldie, K. Miyawaki, J. To, C. W. Melnyk et al., Cytokinin is required for escape but not release from auxin mediated apical dominance, The Plant Journal, vol.82, pp.874-886, 2015.

J. Nadwodnik and G. Lohaus, Subcellular concentrations of sugar alcohols and sugars in relation to phloem translocation in Plantago major, Plantago maritima, Prunus persica, and Apium graveolens, Planta, vol.227, pp.1079-1089, 2008.

A. Nordstrom, P. Tarkowski, D. Tarkowska, R. Norbaek, C. Astot et al., Auxin regulation of cytokinin biosynthesis in Arabidopsis thaliana: a factor of potential importance for auxin-cytokinin-regulated development, Proceedings of the National Academy of Sciences, vol.101, pp.8039-8044, 2004.

T. Ohshima, H. Hayashi, and M. Chino, Collection and chemicalcomposition of pure phloem sap from Zea-mays L, Plant and Cell Physiology, vol.31, pp.735-737, 1990.

V. Ongaro and O. Leyser, Hormonal control of shoot branching, Journal of Experimental Botany, vol.59, pp.67-74, 2008.

K. Otori, M. Tamoi, N. Tanabe, and S. Shigeoka, Enhancements in sucrose biosynthesis capacity affect shoot branching in Arabidopsis, Bioscience Biotechnology and Biochemistry, vol.81, pp.1470-1477, 2017.

R. Pierik and C. Testerink, The art of being flexible: how to escape from shade, salt, and drought, Plant Physiology, vol.166, pp.5-22, 2014.

P. Prusinkiewicz, S. Crawford, R. S. Smith, K. Ljung, T. Bennett et al., Control of bud activation by an auxin transport switch, Proceedings of the National Academy of Sciences, vol.106, pp.17431-17436, 2009.

A. Rabot, C. Henry, B. Baaziz, K. Mortreau, E. Azri et al., Insight into the role of sugars in bud burst under light in the rose, Plant and Cell Physiology, vol.53, pp.1068-1082, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00841828

C. Rameau, J. Bertheloot, N. Leduc, B. Andrieu, F. Foucher et al., Multiple pathways regulate shoot branching, Frontiers in Plant Science, vol.5, p.741, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01168759

M. Renton, J. Hanan, B. J. Ferguson, and C. A. Beveridge, Models of long-distance transport: how is carrier-dependent auxin transport regulated in the stem, New Phytologist, vol.194, pp.704-715, 2012.

T. Roitsch and R. Ehness, Regulation of source/sink relations by cytokinins, Plant Growth Regulation, vol.32, pp.359-367, 2000.

H. Roman, T. Girault, F. Barbier, T. Brouard, N. Pencik et al., Cytokinins are initial targets of light in the control of bud outgrowth, Plant Physiology, vol.172, pp.489-509, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01602830

T. Sachs and K. V. Thimann, The role of auxins and cytokinins in the release of buds from dominance, American Journal of Botany, vol.54, pp.136-144, 1967.

W. Saeed, S. Naseem, and Z. Ali, Strigolactones biosynthesis and their role in abiotic stress resilience in plants: a critical review, Frontiers. Plant Science, vol.8, 2017.

S. Sakr, M. Wang, F. Dedaldechamp, M. D. Perez-garcia, L. Oge et al., The sugar-signaling hub: overview of regulators and interaction with the hormonal and metabolic network, International Journal of Molecular Sciences, vol.19, p.2506, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01891832

M. Seale, T. Bennett, and O. Leyser, BRC1 expression regulates bud activation potential but is not necessary or sufficient for bud growth inhibition in Arabidopsis, Development, vol.144, pp.1661-1673, 2017.

S. Shimizu-sato, M. Tanaka, and H. Mori, Auxin-cytokinin interactions in the control of shoot branching, Plant Molecular Biology, vol.69, pp.429-435, 2009.

N. Shinohara, C. Taylor, and O. Leyser, Strigolactone can promote or inhibit shoot branching by triggering rapid depletion of the auxin efflux protein PIN1 from the plasma membrane, PLoS Biology, vol.11, p.1001474, 2013.

K. Sorefan, J. Booker, K. Haurogne, M. Goussot, K. Bainbridge et al., MAX4 and RMS1 are orthologous dioxygenase-like genes that regulate shoot branching in Arabidopsis and pea, Genes & Development, vol.17, pp.1469-1474, 2003.

K. Takei, T. Takahashi, T. Sugiyama, T. Yamaya, and H. Sakakibara, Multiple routes communicating nitrogen availability from roots to shoots: a signal transduction pathway mediated by cytokinin, Journal of Experimental Botany, vol.53, pp.971-977, 2002.

M. Tanaka, K. Takei, M. Kojima, H. Sakakibara, and H. Mori, Auxin controls local cytokinin biosynthesis in the nodal stem in apical dominance, Plant Journal, vol.45, pp.1028-1036, 2006.

C. Tarancon, E. Gonzalez-grando, J. C. Oliveros, N. M. Cubas, and P. , A conserved carbon starvation response underlies bud dormancy in woody and herbaceous species, Frontiers in Plant Science, vol.8, p.788, 2017.

K. V. Thimann and F. Skoog, Studies on the growth hormone of plants. III. The inhibitory action of the growth substance on bud development, Proceedings of the National Academy of Science, vol.19, pp.714-716, 1933.

M. Tian, K. Jiang, I. Takahashi, and G. Li, Strigolactone-induced senescence of a bamboo leaf in the dark is alleviated by exogenous sugar, Journal of Pesticide Science, vol.43, pp.173-179, 2018.

M. Umehara, A. Hanada, H. Magome, N. Takeda-kamiya, and Y. S. , Contribution of strigolactones to the inhibition of tiller bud outgrowth under phosphate deficiency in rice, Plant and Cell Physiology, vol.51, pp.1118-1126, 2010.

M. Umehara, A. Hanada, S. Yoshida, K. Akiyama, T. Arite et al., Inhibition of shoot branching by new terpenoid plant hormones, Nature, vol.455, pp.195-129, 2008.

T. Waldie and O. Leyser, Cytokinin targets auxin transport to promote shoot branching, Plant Physiology, vol.177, pp.803-818, 2018.

M. Wang, L. Moigne, M. A. Bertheloot, J. Crespel, L. Perez-garcia et al., BRANCHED1: a key hub of shoot branching, Frontiers in Plant Science, vol.10, p.76, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02025844

T. Werner, K. Holst, Y. Pors, A. Guivarc'h, A. Mustroph et al., Cytokinin deficiency causes distinct changes of sink and source parameters in tobacco shoots and roots, Journal of Experimental Botany, vol.59, pp.2659-2672, 2008.

A. Wingler, Transitioning to the next phase: the role of sugar signaling throughout the plant life cycle, Plant Physiology, vol.176, pp.1075-1084, 2018.

J. H. Zou, S. Y. Zhang, W. P. Zhang, G. Li, Z. X. Chen et al., The rice HIGH-TILLERING DWARF1 encoding an ortholog of Arabidopsis MAX3 is required for negative regulation of the outgrowth of axillary buds, The Plant Journal, vol.48, pp.687-696, 2006.

, Supporting Information Additional Supporting Information may be found online in the Supporting Information section at the end of the article