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Abstract

The n-3 docosapentaenoic acid (n-3 DPA) is lesdietiun-3 long-chain polyunsaturated fatty acid (LER),
compared to its counterparts eicosapentaenoic @) and docosahexaenoic acid (DHA). Present od fo
sources in non-negligible quantities, as well abuman milk, dietary n-3 DPA is of current interesth for its
ability to increase EPA and DHA tissue status aodifs specific or shared biological effects. Indesome
evidence showed that dietary n-3 DPA is a sourcERA and slightly DHA in the major metabolic organs3
DPA is also the precursor of a large panel of lipigdiators (protectins, resolvins, maresins, iSSipItes)
principally implicated in the pro-resolution of tlflammation with specific effects compared to thther n-3
LCPUFA. Recent results showed that n-3 DPA is iegplin the improvement of cardiovascular and metabol
disease risk markers, especially plasma lipid patars, platelet aggregation, insulin sensitivityd arellular
plasticity. Moreover, n-3 DPA is the most abundar83 LCPUFA in the brain after DHA and it could be
specifically beneficial for elderly neuroprotectj@and early-life development. These results letthéodevelopment
of two drugs specifically containing n-3 DPA. Thisview summarizes the different knowledge about DFA
direct and indirect sources, availability and posafion methods, focusing thereafter on the retirdings showing
n-3 DPA relationship with fatty acid metabolismpiti mediators, Finally, the n-3 DPA biological and

pharmacological effects are described.

Highlights

« n-3 DPA could be considered like a dietary soufdeRA tissue content

* No evidence showed that dietary n-3 DPA increasaih DHA

* Hydroxy-metabolites from n-3 DPA are involved i thro-resolution of inflammation

« More and more evidences about the n-3 DPA spegfifacts to decrease lipid parameters

* n-3 DPA purification methods will allow its accdsity for furtherin vivo studies
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1. Introduction

The n-3 long-chain polyunsaturated fatty acids (UER) have been widely studied and contribute to ergus
beneficial effects, mainly associated with cardgmdar prevention [1], neurodevelopment, but alsth ihe
reduction of the risk of neurodegenerative disedg¢sindeed, these n-3 LCPUFA are involved in pnanocesses
such as the increase of membrane plasticity, tmthegis of oxygenated metabolites and the resolutib

inflammation or the regulation of genes [3].

The majority of the n-3 LCPUFA studies were conddatsing fish oils, composed of a mixture of thresgor n-3
LCPUFA: docosahexaenoic acid (DHA), eicosapentaeacid (EPA) and n-3 docosapentaenoic acid (n-3)DPA
Most of the beneficial effects of fish oils haveehaattributed to DHA and then to EPA, for whichrthes growing
interest in the independent and shared functions.tl@ other hand, the literature concerning theen@l
protective effects of n-3 DPA is brief because DF3A represents less than one-third of each EPADd in fish
oils. In addition, n-3 DPA is not commercially akadile in sufficient quantity, with high purity (38%) and at an

affordable price to set up vivo nutritional supplementation studies [4].

Studies about n-3 DPA have however begun to groredent years. n-3 DPA is indeed the second n-3UFZP
found in the brain (w/w), although its cerebral centration is about 70 times lower than DHA. Moreovhe
level of n-3 DPA in human milk is higher than tlltEPA, similar to that of DHA and its level is neostable [5],
implying a potential impact of n-3 DPA during pregity and development, which is the subject of anereview
[6]. While obtaining optimal tissue status in n-BRUFA is one of the current public health challennge3 DPA is
also the only intermediate between EPA and DHAhm -3 LCPUFA conversion pathway frarrinolenic acid
(ALA) present in significant quantities in the digherefore, could n-3 DPA serve as a dietary soordiological
reservoir of DHA and EPA?

This paper reviews and summarizes the differentivkedge about n-3 DPA and focus on the most rededings
synthesized in Table 1. To more thorough reviewceoning specific knowledges, the reader is encadag read

another reviews specific about n-3 DPA or includiings mentioned in adequate sections below [22b

2. Dietary sources and availability of n-3 DPA

2.1.Commercial availability

Suppliers who offer n-3 DPA> 98-99% purity cannoiyide on demand enough quantities of n-3 DPAiffiosivo
studies at prices that are affordable for mostare$elaboratories (supplier communications, 20THus, studies
focusing on n-3 DPA are often association studidsuimans orn vitro studies. Mostn vivo studies thus used n-3
DPA with a purity level <98% which therefore alsontains mainly DHA, EPA and n-6 DPA, limiting the
interpretation of these findings [8,9,13]. In adlufit only one supplier offers radiolabell&C- n-3 DPA (ARC,
10uCi), which is also very expensive and inaccesdiien-3 DPA metabolism monitoring studies, althougio
studies have reported its usevivo [14,15]. A n-3 DPA-based dietary supplement hae adsently appeared on
the market and contains 15% n-3 DPA in proporton-8 LCPUFASs (Super n-3 DPA Fish Oil®, SwansonAJS
2018).
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2.2 Purification and synthesis

To alleviate this problem of commercial availalyilas well as to study n-3 DPA in various dietapidiforms,
some teams have been interested in the synthesigtog purification of n-3 DPA from natural souscéoremost,
a five-step synthesis of n-3 DPA from EPA has béescribed in 30% overall yield for making multi-higifam
quantities of n-3 DPA [16]. Concerning n-3 DPA ffigation, historically, a Japanese study first feed on the
industrial scale purification of n-3 DPA in ethydter form fromSchizochytrium sp. algae oil by industrial high-
performance liquid chromatography (HPLC) using teeerse phase columns. They obtained n-3 DPA (ahd)D
> 99% purities with a production of 70 g/hour oBrBPA [17]. A Chinese team then focused on purgym3
DPA in the laboratory from tuna oil, firstly by atallization of the fatty acids complexed with yréaen by
purification by liquid chromatography (LC) on av&l nitrate silica column. [18]. They obtained DBA at 22.3%
purity with a purification efficiency of 70.7%. \Aerecently, the same team managed to purify n-3 Diea
16.4% to 28.1% of the total fatty acids in the foofndiacylglycerol by crystallization (6h, -80 ° @om the
Schizochytrium sp oil [19]. Various patents have also been fileghtoduce, extract and purify n-3 DPA (and DHA)
as fatty acid methyl esters froaotkenia [20—-22]. In addition, n-3 DPA monoglycerides haween synthetized
through esterification at then-1 position of the glycerol backbone by using n-3ADEthyl esters as starting
materials [23]. The self-assembly of this compobiad been structurally characterized [24], whichid@ive it a
better bioavailability than n-3 DPA ethyl ester amdglyceride forms, as shown previously for EPA
monoglycerides [25]. More recently, we have pudfiens of grams of n-3 DPA> 99% by flash and pratpse LC
from commercial fish oils enriched with n-3 LCPUHR6,27]. The purification involved seven successive
purification cycles with a purification efficiency 70% and allowed to purify 8g of n-3 DPA/week [268] well as
EPA and DHA> 99% [27].

The advance of these methods could quickly allogess to the amounts of n-3 DPA needed for clirstadies in
humans, requiring several hundred grams of purdi®A&. n-3 DPA-enriched dietary supplements coulé lgood
source for the purification of n-3 DPA by LC comedrto fish or algae oils, as well as the combimatid LC
purification methods, crystallization and distiitat [28] or the use of drug under development dmtdcwith n-3
DPA [25,29].

2.3 Dietary sources and consumption

The major source of n-3 DPA is obviously seafoat]uding fish from theClupeidae family that gave the n-3
DPA its common name: clupanodonic acid (USDA, 2058al meat and fats appear to be the richesBilDRA,
containing 5.6% of n-3 DPA [30], which would amouata daily consumption between 1.7 and 4.0 g 8fDPA
per day for the Inuit population [31]. Among the sh@ommon consumer products in Western societynaal
contains 393 mg of n-3 DPA per 100g serving, Attamtackerel 200 mg, and other oily fish between 264
200mg (USDA, 2014). Beef liver and lamb are thénest land-based sources of n-3 DPA but are alsalyhig
variable in terms of provenances [4]. Thus, thaytaim about 140 mg of n-3 DPA/100 g in New Zealdnd, only
20-30mg in the United Kingdom, while American bédeks not contain any, surely associated with diffees in



149 pasture production and quality [32—34]. Indeed,ghantities of n-3 DPA in organic meat are arou@ébxyreater
150 than in conventional meat [35]. While the dominaatirces of EPA and DHA are seafood products thatago
151 less n-3 DPA, n-3 DPA is the most prevalent n-3 UER in meat [36], thus varying the sources and am®u
152 consumed of n-3 DPA according to eating habitsaariother hand, the ruminal biohydrogenation of nFBADwas
153 similar to that of EPA and appears complete withing formation of intermediate derivatives expectdbr
154  biohydrogenation of DHA [37]. Food supplements méaen fish oils enriched with n-3 LCPUFA may also
155 provide a n-3 DPA intake, with mackerel oils contag about 4.9% n-3 DPA, compared with 3.0% formsai or
156 2% for sardine.

157 The main dietary sources of n-3 DPA in pregnant lacthting women are seafood (59%), poultry (14fiat
158 products (11%) and dairy products (9%) [4]. Aboubthirds of seafood-derived n-3 DPA intake in th@gomen
159 was attributed to salmon consumption [38]. In Aalgin children, intake of EPA and DHA is stronglyrielated
160 with consumption of fish and seafood, while intaifen-3 DPA is moderately correlated with meat congtion
161 [39]. The main contributor to n-3 DPA consumptionang these children was meat, poultry and wildf(&@%),

162 fish and seafood (23%), cereal products and di€h&%6), dairy products (5.6%) and finally egg produ(3.6%)
163 [39,40]. In Europe, the average daily intake of BRA in adults is between 25 mg/day (Belgium, woragad 18-
164 39) and 75 mg/day (France, male> 45 years), withrtde intakes of 12 to 80 mg/day. In France, theximum
165 intake, estimated by the five highest percentilethe population, is 129 mg / day of n-3 DPA [38here is no
166 database of young children for n-3 DPA (0-3 yeddj and adolescents (13-19 years old). SwedishybBgian
167 and German consumption data indicate that the geedaily intake of n-3 DPA in 4-year-old childres 30
168 mg/day, 40 mg/day for 8-12 years and 120 mg/dagftp years old [38,40]. Thus, n-3 DPA could cdnite up
169 to 30% of the intake of n-3 LCPUFA in the diet bkese populations [41] but there are important digpaf

170 consumption beyond populations and ethnicity [42].

171 Dietary sources of n-3 DPA can also be indire¢hegiby providing the precursors of the n-3 LCPUgohversion
172  pathway, or by providing lipid mixture to increagee conversion from ALA to n-3 DPA. Several studies/e
173 shown that n-3 DPA can be increased in the bloadpastment in human as well as in tissues in animatits a
174  diet rich in ALA or EPA [43]. More recently, the dition of echium oil rich in stearidonic acid in the diet of rats
175 increased the tissue n-3 DPA status, showing thatidonic acid could also be a source of n-3 DRAddition to
176 a source of EPA for which it is mainly described!,@#b]. While human milk contains n-3 DPA and ceatbr
177 accumulation of n-3 LCPUFA occurs mainly during fivet years of life [5], some studies have showattthe
178 addition of milk lipids in the diet of young peoplhose fatty acid composition are closer to breaitit than a
179 mixture of vegetable oils, also increased tiss@eDPA status. First, in a monocentric, double-blbodtrolled and
180 randomized trial, healthy newborns fed formula eorihg a mixture of dairy lipids and plant oils fndbirth to 4
181 month-old increased their n-3 DPA content in redobl cells (RBC) compared to newborns fed with anida
182 composed with plant oils only [46]. Moreover, thisrease in RBC n-3 DPA was more important thabréastfed
183 newborns. In healthy post-weaning Sprague Dawléy, & partial incorporation of dairy lipids in tliget with
184  vegetable oils (50% w/w) during 6 weeks increasedn-3 DPA status in the RBC, brain, liver and gipally in
185 the heart, compared to 100% vegetable oil diet$. [#Aus, dairy lipids could be a potential indirdatlp to
186 increase the n-3 DPA status in early life. Surpghy, it has been shown that n-3 DPA supplememiafo5% of
187 total fatty acids, 10% lipid w/w) and the partiadcorporation of dairy lipids in the diet (50% whikpd a



188 complementary effect to increase the n-3 LCPUFAusta tissues of Sprague Dawley rats fed from uwepfor 6
189 weeks, especially EPA and n-3 DPA tissue cont&@F [

190
191 2.4 Markers of food consumption

192 The n-3 DPA composition of the RBC membranes aral dtiferent lipid classes of plasma in humans are
193 positively correlated with dietary intake of n-3 ROFA, as for EPA and DHA. This increase, howevands to be
194 relatively limited compared to that of EPA and DI#8]. In addition, n-3 DPA is present in whole bibim lower
195 amounts than EPA and DHA and the proportion of P decreases less than EPA or DHA as the propodio
196 n-6 PUFA increases in the blood [49].This suggdsas n-3 DPA present in other blood compartmeras tRBC
197 (plasma, platelets, peripheral blood mononuclelis)cmay have a different metabolism than EPA ahtiADand
198 that the n-3 DPA blood level would be preserved.[50

199 n-3 DPAis for now not considered in the calculatad the Omega-3 index (EPA + DHA of the RBC memies),
200 which is used as a marker of consumption but atsa aisk marker for total mortality, sudden cacdieath or
201 other cardiovascular risks in epidemiological sésdj51]. Although the inclusion of n-3 DPA in then@ga-3
202 index was more precise to estimate n-3 LCPUFA custi& whole blood [50], it did not improve the gietion of
203 the risks associated with the existing Omega-3xrdig].

204
205 2.5 Nutritional recommendations

206 The different health national agencies agreed ttmatdata about n-3 DPA were insufficient to prodspecific
207 recommendations for this n-3 LCPUFA. Neverthel&sgland [52], Australia and New Zealand [53] ashaslthe
208 Netherlands [54] included the n-3 DPA in the sunthefrecommended n-3 LCPUFA (EPA + n-3 DPA + DHA).

209

210 3. Productsderived from n-3 DPA

211 3.1 A reservoir of EPA and DHA

212 n-3 DPA is the direct intermediate between EPA BRA, in the conversion pathway from ALA, to be peasin
213  significant amounts in the human diet comparech&o@24:5 n-3 and C24:6 n-3 derivatives [39]. Thiewersion
214  pathway is well known and involves a sequence eatigase enzymes adding one double bond to thercahain
215 and elongase enzymes extending the carbon-chatwamfcarbons (Figure 1). The n-3 LCPUFA conversion
216 pathway is parallel to that of n-6 LCPUFA using #&ne sequence and enzymes. Thus, the two patarays
217 competition for substrates with each other. Innk& LCPUFA conversion pathway, the n-3 DPA is ehrd to
218 the C24:5 n-3 derivative by the elongase-5 and ewealongase-2 enzymes, then desaturated to thé @23:by
219 the action of the\6-desaturase, and finally converted to DHA by sopigeomalp-oxidation step [55]. The\6-
220 desaturase and more recently elongase-2 are coggbids the limiting enzymes in this conversion ywath to
221 DHA [56]. Thus, it has been hypothesized that dieta3 DPA could be a better precursor of DHA tluhetary



222
223
224
225

226
227
228
229
230
231
232
233
234
235
236
237
238
239
240

241
242
243
244
245
246
247
248
249
250
251
252

253
254
255
256
257
258
259

EPA, bypassing the conversion of EPA to n-3 DPAgstlongase-2 and elongase-5 as well [26,27]. &he
desaturase activity has also been desciiibetro in humans to convert n-3 DPA directly to DHA blaése results
need to be confirmed [57]. Some authors have alpothesized that n-3 DPA could not only serve assarvoir

of DHA but also of EPA in humans, in farm animatslgotentially in other mammals [58].

The ability of dietary n-3 DPA to increase tissti&tss in DHA remains however controversial and seéssue-
dependent. In humans, a 7-day supplementationandihgle daily dose of pure n-3 DPA resulted inremease in
plasma DHA in triglycerides only [58]. Gavage ofsréor 7 days with 50 mg of n-3 DPA/day in the fooifree
fatty acid led to an increase in DHA in the livarlp compared to ALA control [59]. In the miniatupmodle,
intravitreal injection of T9C-n-3 DPA showed an increase in radiolabeled DHAhmretina [15]. Conversely, in
the C57BL/KsJ-db/db obese mouse supplemented faeks with tri-n-3 DPA, no increase in DHA was fdun
studied tissues [60], as in the C57BL/6J mousefadyh-fat diet and force-fed with 50mg of n-3 DBaily for 6
weeks [13]. In these mice, n-3 DPA supplementatmaded to impact tissue fatty acid composition nikeeeDHA
than EPA supplementations [13]. While brain tisst@mposition is known to remain highly stable, oral
administration of n-3 DPA to rats resulted in therease of cerebral n-3 DPA and DHA, regardlessnahal age
[61]. However, these both studies used n-3 DPAe@0% purity containing DHA and is not easy tceiptet.
The addition of n-3 DPA in endothelial cell cultaref aorta [62,63], rat hepatocyte line (FaO) [G#]mary rat
hepatocytes [65] or human hepatocyte line (Hep®@8) ¢aused an increase in EPA in cells and mediayedl as
DHA in media, but DHA was conversely not increasetuman intestine (Caco-2) or monocyte (THP-1) losts
[66].

Dietary n-3 DPA could also be used as a sourceP#.Hhe EPA produced from n-3 DPA certainly comesrf
the retroconversion of n-3 DPA, implicating, as BIHA, the acyl-CoA oxidase and one peroxisoifralxidation
step. This pathway was demonstrated in acyl-CoAase deficient fibroblasts which do not led to h€3PUFA
[67]. In Sprague Dawley rats, we showed that therall tissue fatty acid change following a dietarg DPA
supplementation was more similar to EPA suppleatent than DHA supplementation [27]. In this stutlye
apparent retroconversion of n-3 DPA into EPA wasi@aarly important in the kidney (68%), the livé88%) and
the spleen (20%). These results are confirmed byhan study showing a higher apparent retroconeersf n-3
DPA in the kidney than in the liver in rats (50 oy by oral gavage) [68] (Figure 1). Finally, theparent
retroconversion of n-3 DPA to EPA was shown in huggb8], Sprague-Dawley rat [59], C57BL/6J-db/dbus®
[60], C57BL/6J mouse (high-fat diet) [13] and mini@ poodle [15]. However, this retroconversionstd

estimated relative to control without dietary n-B®and there is a lack of labeled n-3 DPA monitgpritudies to

really quantify the importance of this pathway.

We recently investigated for the first time thestie distribution of n-3 LCPUFA in 18 tissues, fallog a 3 week
nutritional pure n-3 DPA supplementation (0.5% fué total fatty acids included in the diet) of hbglSprague
Dawley rats in post weaning [26]. The n-3 DPA comt@creased in half of the studied tissues andtlgnas the
spleen, lung, heart, liver and bone marrow from%50 +110% compared to the control group. n-3 DPa#sw
mostly retroconverted into EPA, especially in thed (35%) and the kidney (46%) and slightly congdrinto
DHA, showing an increased content of these two LERUnN affected tissues. Moreover, the n-3 DPA

supplementation decreased total n-6 PUFA in affetissues and especially n-6 DPA and adrenic &2 {4 n-6)



260 [26]. In organs most affected by its supplementgtianother study showed that dietary n-3 DPA wa@imna
261 incorporated into the phospholipid fractions, (pitetidylethanolamines and phosphatidylcholines). [68

262 To conclude, dietary n-3 DPA is mainly incorporatednajor metabolic organs and esterified into shee lipid
263  species than EPA and DHA. It is mainly retroconeeéiinto EPA and slightly converted to DHA. It cotferefore
264 be considered as a source of EPA but also DHA tesaer extent, implying potential physiological eets

265  associated within these tissues.

266
267 3.2 Bioavailability

268 Only one study investigated the bioavailabilityfi@éncy with which dietary n-3 DPA is used systeiteally
269 through normal metabolic pathways) of dietary ni3AD After oral administration of 2,5Ci of 1-“C-n-3 DPA, 1-
270 C-EPA or 1¥**C-DHA in the rat housed in metabolic cage for 6/’C-n-3 DPA was catabolized t6CO, in the
271 same proportion as the*4c-DHA (about 7% of the ingested dose) and less tharl**C-EPA (about 18%). In
272  addition, the percentage of the ingested radioégtimeasured in the heart and muscle was simitan ft+‘C-n-3
273 DPA and 1*C-DHA and higher from 12C-EPA. Conversely, the radioactivity found in livérain and kidney
274  was similar from 1¥'C-n-3 DPA and T2C-EPA but less than from 1C-DHA [14].

275 The digestibility (difference between intake anarexion) of dietary n-3 DPA in ethyl ester form (8%) was
276  similar than DHA (96.9%) and lower than EPA (98.3#)post weaning Sprague Dawley healthy rats [BY].
277 another study, the excretion of n-3 DPA was 4.@fgreater than that of EPA after ingestion of 2sday of n-
278 3 DPA or EPA as free fatty acids for 3 days in [88]. n-3 DPA was also preferentially hydrolyzeg forcine
279  pancreatic lipasm vitro compared to EPA and DHA, suggesting a faster akisor[70].

280 Thus, the n-3 DPA seems slightly less absorbed ttawnther n-3 LCPUFA. Nevertheless, its digestipremains
281 greater than 95% regardless of its form of intalM®re studies are needed to better address the R D
282  bioavailability compared to other n-3 LCPUFA.

283
284 3.3.Precursor of lipid mediators

285 Like DHA, n-3 DPA is a precursor of docosanoids saaphysiological effects are however poorly knoBeveral
286 metabolites of n-3 DPA are indeed discovered easdr yn different tissues, [10,71-75]. The multifileid
287 mediators identified from n-3 DPA and their dedubgéabsynthesis pathways are summarized in Figure 2.

288 The 17S-hydroperoxy-n-3 DPA is first synthesizedhwy action of the 15-lipoxygenase (15-LOX). It ¢hareafter
289  be converted either into 16S,17S-epoxy-7Z, 10Z,, 12HE, 19Z-n-3 DPA which will be converted by enati
290 hydrolysis into the family of Protecting ppa Protectin 43 ppa (10R,17S-dihydroxy-72Z,11E,13E,152,19Z-n-3
291 DPA) and Protectin 23 ppa (16,17R-dihydroxy-72,10,13,14,19Z-n-3 DPA)[76,7@}; into 7,17S-dihydroperoxy-
292 n-3 DPA by the 5-LOX to give the family of Resolsins ppa Resolvin D13 ppa (7,8,17S-trihydroxy-
293 9,11,13,1%,197-n-3 DPA), Resolvin D23 ppa(7,16,17-trinydroxy-8,10,12,14E,19Z-n-3 DPA) anesBlvin D5, 3
294 ppa (7S,17S-dihydroxydocosa—8E,10Z,137,15E,19Z-n-3 PPA]. The maresins derived from n-3 DPA come
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from the action of the 12-LOX followed by the retlono of 14S-hydroperoxy-72Z,10Z,12E,16Z,19Z-n-3 DRA
13,14S-epoxy n-3 DPA, itself enzymatically hydragzto give the family of Maresing pps Maresin 1,3 ppa
(7S,14S-dihydroxy-8E,10E,127,16Z,19Z-n-3 DPA), Msmne?2 .5 ppa (13,14-dihydroxy-77,9,11, 167,19Z-n-3
DPA) and Maresin 33 ppa(14, 21-dihydroxy-7Z,10Z,12E,16Z,19Z-n-3 DPA). Th&.OX can also produce mono-
and di-hydroxylated derivatives from n-3 DPA. THelIOX pathway is the most efficient, converting 88¥ihe
n-3 DPA to its 17S-hydro(peroxy) n-3 DPA derivativetubo, compared to only 10% for 12-LOX and 5-LOX
[78]. Some of these mono-hydroxylated metabolitesvell as Resolvin D53 ppa @and Maresin 1,3 ppa Were
detected in human serum after n-3 DPA supplementésir 7 days [79].

n-3 DPA can additionally undergo the induced actidrcyclooxygenase-2 (COX-2), to form the 13R-hygro
72,10Z,13R,14E,16Z,19Z-n-3 DPA which will be abes for derivatives from DHA, to be reduced to 18-0x
derivatives (EFOX). The 17-EFOX-D5 was for instapceduced when aspirin was added to the cultureiumed
of macrophages, as for EFOX derivatives from DHAO][8 The 13-serie resolvins from 13R-hydroxy-
772,10Z,13R,14E,16Z,19Z-n-3 DPA (RvT1: 7,13R,20kdroxy-n-3 DPA, RvT2: 7,12,13R-tri hydroxy- n-3 BP
RvT3: 7,8,13R-trihydroxy-n-3 DPA, RvT4: 7,13R-dilvgaty-n-3 DPA) have been identified in co-incubatiasf
neutrophils and endothelial cells [81]. These daiires are formed by COX-2 then by S-nitrosylatidie
cytochrome P450 can also metabolize n-3 DPA, batlesser extent than other n-3 LCPUFAs, althobghresult
must be confirmed [82,83]. Isoprostanes resultingmf the peroxidation of n-3 DPA are not yet known.
Nevertheless, a series of isoprostanes derived fr@DPA have recently been described from theisefher of
n-3 DPA [84]. Very few studies report on the ovedastribution and action of oxygenated metaboliiresn n-3
DPA because of their very recent discovery andlaélok of synthetic standards [85]. More information the
chemical synthesis, availability and biologicaleets of n-3 DPA-derived metabolites can be foundhiese

reviews [10].

4. Biological and pharmacological effects of n-3 DPA

4.1 Inflammation and cancer

The decrease in inflammation associated with n-Z BBems to come mainly from these lipid mediatars]
mainly the specialized pro-resolving mediator (SRMaresins, protectins, resolvins). Indeed, indobatf human
macrophages with Protectin [l ppa increased the monocyte differentiation, the phatiocgctivity of
macrophages and the apoptosis of neutrophils, wéiiehkey factors in the resolution of inflammatiai,76].
Moreover, the incubation of n-3 DPA-derived Mardsinppa also stimulated macrophage phagocytosis and
clearance of human apoptotic neutrophils in a simihanner to DHA-derived Maresinl [72]. In human
inflammatory bowel disease colon biopsies, the d@tat D15 ppa and Resolvin Db; ppa increased [86]. These
lipid mediators protected against colitis and ititesd inflammation in mice and decreased the exbéreéukocyte
adhesion and emigration post-stimulation. Contréng, inhibition to their metabolic pathway (15-LOX¥d to
increased intestinal inflammation [86]. In a seréther studies, 13-series resolvins from n-3 DitAelerated
the resolution of inflammation and increased swalvivy 60% inEscherichia coli-infected mice [72,81,87]. The
independent effects of each 13-series resolvina fie83 DPA were well described previously (suppadlgd7]. In
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LPS-activated murine macrophage like RAW264.7 caellsubated with n-3 DPA, EPA or DHA, n-3 DPA
increased EPA and DHA cell contents, down-regulatdB®NA expression of pro-inflammatory factors (IL16;

1B, INOS, COX-2), and especially decreased IL-6 mRBEMpression dose-dependently more than EPA and
similarly than DHA [88]. Interestingly, the downgelation of IL-6 and IL-B mRNAs were similar when cells
were incubated with an inhibitor of the delta-6atasase, demonstrating that n-3 DPA exhibited iafitsmmatory
effects independent of DHA conversion [88].

Several studies from the same research team hawensthat n-3 DPA-monoacylglyceride had greater -anti
inflammatory, anti-proliferative and pro-apoptogiects than EPA- or DHA- monoacylglycerides [25]a model
of colorectal cancer [89], in a model of rheumataithritis [34], and in pulmonary hypertension wher3 DPA
reduced the markers of inflammation and remodebstwar pattern [90]. As a consequence, a preszripirug
containing monoglyceride n-3 DPA is in the finadgs of development by SCF Pharma for its antasmnfhatory
and anti-proliferative properties and has beenmpete[91]. In healthy adult men, a high level 08 BPA was
correlated with a lower inflammation score, maiagsociated with decrease in C-reactive protein (GRE TNF-
a scores [92]. In another study, n-3 DPA reducedekgression of genes involved in the inflammatiérlood
vessel membranes [93]. Treatment of aortic endetheklls with n-3 DPA strongly inhibited angiogeis
implicated in tumor growth, inflammation, and miargiopathies [94]. A prospective study associaiethd/ n-3
DPA with a reduction of breast cancer risk (likefE&hd DHA intake) [95].

On the other hand, n-3 DPA anti-inflammatory prdjesrcould benefit adults with comprised pulmonzeglth. n-
3 DPA was positively associated with forced expinatvolume in the first second (F{)/ forced vital capacity
(FEV) and FEV/FVC, modified by smoking and sex, in meta-analyae®ss seven cohorts (n=16,134) [96]. A
recent epidemiological study has shown that theswored n-3 DPA was the most fatty acid associated svi
better average FENANd slower FEYdecline in the smoking patient [42]. Interestindlye FEV, decline from the
adverse effect of continuous current smoking waspetely negated with high n-3 DPA intake in thevélace
Smokers cohort [42]. In human bronchus and guin&p tpachea preparations treated with n-3 DPA-
monoacylglyceride, the higher concentration of BRA reduced the TNEINF kB pathway, suppressed COX-2

expression, decreased the’Gsensitivity of bronchial explants and reverseditisieiced contractile reactivity [97].

4.2 Cardiovascular and metabolic diseases

The effect of n-3 DPA on the lipid parameters aisged with the prevention of cardiovascular diseasehe most
documented topic (anti-inflammatory properties,itiitton of cytokine synthesis, decrease in thronhodecrease
in plasma lipids, inhibition of atherosclerosis.Studies on the potential effect of n-3 DPA in firevention of
cardiovascular diseases in humans are usually iaisocstudies and concern the blood compartmetmas been
shown that a high level of n-3 DPA in the red blamdl membranes in men and in women is associattdd av
lower risk of developing metabolic syndrome in (dse adults [98]. In addition, a high plasma n-3 D@Ad
DHA) level would also be the most correlated witheduction of the risk of cardiovascular diseasthpiasma
DHA level [51,99-102]. Moreover, in a pool of 1%hoot studies, n-3 DPA (in plasma and adipose t)sa@es the
only n-3 LCPUFA associated with a lower risk ofalotoronary heart disease, while all n-3 LCPUFA aver

associated with a lower risk of fatal coronary hehsease [103]. In addition, a cross-sectionatlystiound that
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decrease in RBC n-3 DPA concentrations (3.0% v8%3.was associated with an increased incidence in
cardiovascular diseases [104]. Plasma n-3 DPA \gasiaversely correlated with arterial obstructamd stroke.
n-3 DPA was the only fatty acid whose plasma lesehversely correlated with arterial obstructionamokers
[42,105]. In addition, a cross-sectional study afotid ultrasonography showed an association betwe& DPA
consumption and carotid wall thickness reductioB6]1 Serum n-3 DPA flvs 3° tertile) was the only n-3
LCPUFA inversely associated with the risk of ortiatis hypotension [107]. However, the associatibn-8 DPA
with the reduction of cardiovascular risk was madker (but significant) [108] and these results remai

controversial because some studies didn’t showrapgct of n-3 DPA intake on these factors [11].

In another hand, in children, the highest RBC IewdIn-3 DPA have also been associated with a dsecerisk of
pancreatic islet autoimmunity in children with typdiabetes [109]. Moreover, plasma n-3 DPA and Dlére
strongly and positively associated with insulinsgwity using a global lipidomic approach in rdesl high-fat or
high-fructose diets [110]. Serum n-3 DPA was infiloed by lifestyle: in obese adolescent with carditaiholic
syndrome following a 1-year interdisciplinary theyachanges in n-3 DPA were negatively associatél leptin
and leptin/adiponectin ratio and positively withmhectin [111]. Moreover, high-fat diets supplenteshwith n-3

DPA decreased serum adiponectin level in mice [13].

Somein vitro andin vivo studies, mainly in the rodent model, tried to giptthe mechanisms by which n-3 DPA
could help improving cardiovascular diseases rigkkars. Compared with ALA, EPA or DHA contents, thé&e
of n-3 DPA in RBC was inversely and dose-depengiethtt most correlated with fasting plasma triglydes in
humans, after a 5 month supplementation with ERHA [112]. Thus, several studies in animals havensththat
n-3 DPA improved the lipid profile of plasma likéE and DHA. In healthy rats fed 0.1% n-3 DPA (iresgy) for

6 weeks, plasma total cholesterol, non-HDL chotest&nd cholesterol esters decreased comparechtootgroup
[26]. Compared to EPA and DHA supplementationsthyleester forms, n-3 DPA-fed rats (7.6 mg/day/kg.b
were the only one with lower plasma triglyceridiegal cholesterol, non-HDL cholesterol, total clstézol/ HDL
cholesterol ratio and cholesterol esters conceéotraf27]. The n-3 DPA-supplemented group alsodased its
plasma total antioxidant status and superoxide ulisse activity like EPA and DHA fed-rats, with nibange in
complete blood count, white blood cell and spleteswubpopulations [27]. In hamster fed high-chetes diets,
supplementation with n-3 DPA (50 mg/day) reduceabipla total cholesterol and non-HDL cholesterolpcased
with inhibition of SREBP2 mRNA, resulting in a dease in the transcription of the HMG-CoA Reductase
involved in cholesterol synthesis [113]. Mice sugpknted with dietary n-3 DPA showed a decreadedmcttivity
of Fatty Acid Synthase (FAS), plasma total choledtand triglyceride concentrations [114]. A ventdresting
recent study in C57BL/6J mice fed high-fat diet8%@2w/w) and supplemented with n-3 DPA (72% puripire
EPA or pure DHA for 6 weeks showed that only n-3A0/proved insulin resistance (HOMA) [13]. In thstudy,
both n-3 DPA and DHA prevented the increase in reealanine aminotransferase (ALT) levels, probably
associated with inhibition of the TLR-4/NB signaling pathway and decreased liver lipogendsmmther study
showed that C57BL/KsJ-db/db mice receiving puriftéeh-3 DPA or DHA decreased their hepatic triglyide
levels significantly more than mice treated withAEFSO0]. In a human liver cell culture model (HepGZ2he
decrease in triglyceride synthesis after suppleatiemt with n-3 LCPUFA in the medium was associatéth a
decrease in FAS mRNA expression and was classiietkpending on the supplementations as follow:6028>
DHA> n-3 DPA> EPA [114]. In a rat hepatocyte calid model (FAO) treated with 50M EPA, n-3 DPA or



409 DHA, n-3 DPA decreased most strongly the expressiodMG-CoA reductase, FAS, acetyl-CoA carboxylase
410 (ACC-1), SREBP1-c and ChREBP [64]. On the otherh#me concentration of postprandial plasma chytoomis
411  decreased in healthy women after a breakfast songoieed with n-3 DPA, compared to supplementatiah &WPA
412  or olive oil [58]. Finally, it appears that the nf3PA is transported mainly in the triglyceride parft the
413  chylomicrons and not in the PL after the evaluaperiod of 5 hours in humans [115].

414 Based on these studies, Matinas BioPharma hastedtemd placed on the market a prescription-onlygdr
415 containing a mixture of n-3 DPA and EPA in the foofethyl ester and containing only traces of DHA the
416 treatment of severe hypertriglyceridemia [29]. Cangl to the ingestion of EPA ethyl esters in humaitl
417  severe hypertriglyceridemia (200-400 mg of triglydes/dL plasma), this drug (MAT9001) helped redgcithe
418 plasma triglycerides, total cholesterol, non-HDIolgsterol and VLDL concentrations more significgjé9]. The
419 lack of comparison with the ethyl ester of DHA netkieless reduces the scope of these findings.

420 n-3 DPA can also decrease platelet aggregation significantly than EPA and DHA. n-3 DPA indeed itmited
421 collagen or ARA-stimulated platelet aggregatiomidose-dependent manner using rabbit plateletd frittuman
422  platelets, but this regulation appears sex-depdéndeimumans because only platelet aggregation imevowere
423 inhibited [117,118]. n-3 DPA also increased the LPathway and may act as a strong inhibitor of COXntl
424 COX-2 activities leading to decreased platelet eggtion and active aortic tension [113,116]. n-3AD&so
425 stimulated the migration of endothelial cells, wlagigration and proliferation are processes inwblie the
426  control of the healing response of blood vessed}. & addition, the treatment of aortic endotHetialls with n-3
427 DPA inhibited their migratory activity due to th@nsulation of vascular endothelial growth factor68F) [63].
428 The supplementation of Sprague Dawley rats withium oil, rich in stearidonic acid and potential souafen-3
429 DPA, showed an anti-arrhythmic action comparablén&d obtained by supplementation with fish oithrin DHA
430 and was associated with tissue augmentation. af-h®PA [119].

431 The association between n-3 DPA blood status aegleption of cardiovascular and metabolic risks iaema
432 uncertain. Nevertheless, an even greater levelideace is accumulating in favor of a specific effef n-3 DPA
433 on the improvement of risk factors associated witgtabolic diseases, including improvements in blopidi
434 parameters, in platelet aggregation, in pro-regmiubf inflammation, improvement of insulin sengity or
435 modulation of adiponectin. On the other hand, thefects and their mechanisms remain to be elusmidat

436  humans.
437 4.3 Neuroprotection and development

438 n-3 DPA is the most abundant n-3 LCPUFA in the rafter DHA and it could be specifically beneficfak
439 neuroprotection and for depression prevention [2]a mouse model of epilepsy, Frige®b al. interestingly
440 showed that in the hippocampus of 72 post-statiispticus mice, ILB and TNk transcripts (neuroinflammation
441  markers) as well as 5-LOX and 15-LOX transcriptey(lkenzymes in pro-resolving mediator biosynthesis)e
442 upregulated supporting the hypothesis that nedesmhation in epileptogenesis could result from dufa to
443  engage pro-resolving mechanisms. The authors themesl that some lipid mediator production deriviexirf n-3
444  DPA were downregulated in the hippocampi of epdgehic mice (Resolvin D23 ppa ResoIVIN D5, 3 ppa), While
445  Protectin D1,3 ppaWas upregulated [120]. Moreover, the intracerebndwcular administration of Protectin 3

446  ppa In methylester form (20-200ng) during epileptogesedose-dependently controlled the onset and the



447  propagation of neuroinflammation during epiletpgesen the hippocampus. Providing new leads foatinent,
448 the authors also showed that the injection of RtwteD1 3 ppa improved weight recovery, decreased cognitive

449  deficit, the frequency (- 2-fold) and the averageation (- 40%) of spontaneous seizures [120].

450 Elderly rats (20-22 months) supplemented with nNFBADEPA, or purified monounsaturated fatty acids56 days
451 had neuro-restorative benefits associated with edser in microglial activation and oxidative stressthe
452  hippocampus, two mechanisms involved in the lossyogptic functions and therefore related to cagmidlecline
453  [61]. Moreover, n-3 DPA (and n-6 DPA) inhibited @pgosylphosphorylcholine-induced Eaensitization of
454  vascular smooth muscle contraction by inhibitingpRimase activation and translocation to the calhtbrane, a
455  major cause of cerebrovascular vasospasm [121]eSutiors also hypothesized that RBC n-3 DPA comizund
456  be one of the diagnostic marker of Alzheimer’s digeand one therapeutic target because RBC n-3dePwased
457 in cognitively normal elderly participants with higheocorticaB-amyloid load [122]. Conversely, no association
458 was found between serum n-3 DPA and performanceeamopsychological tests in an older populatior3]12
459  While n-3 LCPUFA are well-known to decrease th& n$ age-related macular degeneration, plasma lavet3
460 DPA was the only n-3 LCPUFA associated with highercular pigment optical density in subjects withilg

461 history of age-related macular degeneration [124].

462 Concerning depression, purified n-3 DPA supplentertaat 150 mg/kg/day for 6 days in rats resultedai
463  reduction of symptoms associated with depressioniraareased levels of cerebral n-3 DPA [125]. jr@spective
464  cohort study in aged subjects, the third quartilae-8 DPA intake was also correlated with a redudskl of major
465 depressive disorder as well as EPA and fish intbdavever, only n-3 DPA and fish intake remainechgigant
466 when odd ratios were adjusted for cancer, myochndfarction, stroke and diabetes [126]. RBC n-3ADgnd
467 both ALA and DHA) levels were also negatively asated with depression of postmenopausal women ib ey
468 used hormone therapy, suggesting an interactiomelaei n-3 DPA and hormones on depression [127].

469 n-3 DPA is also present in non-negligible quarditie human and mammalian milk, so it could be iagdlin
470  fertility [128], pregnancy [129]and early-life ddepment. Indeed, high n-3 DPA intake by lactatingtiners was
471 linked to better neuro-development and bone hedltthildren [6]. Moreover, n-3 DPA blood levels imothers
472  were associated with lower allergic diseases itdmm and mothers. These findings were recently weeiewed
473 [6] and are not detailed here.

474 5. Conclusion and prospects

475  Anincreasing number of association studies sugherhypothesis that n-3 DPA is a bioactive fatiig deneficial
476  to human health. The suggested mechanisms invb&véntportance of n-3 DPA-derived lipid metaboliteshe
477  pro-resolution of inflammation in various modelglanainly the importance of protectin D1 and reso®b found
478 in humans. Many other n-3 DPA-derived metabolitesehalso recently been identified and their poténti
479 physiological effects are not yet known. Likewigeyivo and in vitro studies suggest that n-3 DRAmplied in
480 the improvement of cardiovascular and metaboliealis risk markers, especially plasma lipid paraseptatelet
481  aggregation, insulin sensitivity and cellular pieist. Moreover, n-3 DPA is the most abundant nGRAUFA in the
482  brain after DHA and it could be specifically bemwail for elderly neuroprotection, and early-lifevéopment.
483 Nevertheless, there is still a lack of clinicaleintention studies in humans to elucidate the sigebiblogical
484 effects of n-3 DPA and its underlying mechanismsl aro studies are currently underway (search on
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ClinicalTrials.gov, September 21, 2018). The inseemn commercial n-3 DPA availability as well as #fficiency
and diversity of n-3 DPA purification methods shib#cilitate the implementation of new studieshe toming

years.

While the effects associated with n-3 LCPUFA areld independently, it remains difficult to diféertiate the
effects specific to n-3 DPA itself compared to tha$ EPA and DHA as they are biologically intercerted. For
this, labeled-n-3 DPA monitoring studies are neags$o better understand the independent effects3DPA
compared to other n-3 LCPUFA. In contrast, dietay DPA appears to be a good source of EPA and adairce
of DHA in major metabolic organs, in addition toifge well assimilated. The n-3 DPA could thus cdnite to
increasing the omega-3 status. Indeed, n-3 DPAoigpresent in meat than EPA or DHA and while theces of
fatty fish are limited, its food consumption is magligible and n-3 DPA should surely be consideasdvell as
DHA and EPA within the next nutritional recommeridas. While food sources most often contain a nfix o
different n-3 LCPUFAs, they are studied indepenigeraind it would be interesting to see if the inmpefcdietary
n-3 DPA alone on omega-3 status is of nutritionstriest. compared to a mixture of n-3 LCPUFA repméstive of

human consumption.
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Table 1 — Recent findings about n-3 docosapentaeracid (june 2016-sept. 2018)
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2018 Newborns (0-4 Infant fed with dairy lipids containing formula ireased RBC n-3 DPA status compared to plant aitadta and
month) breastfeeding
2018 Intubo Structural characterization of self-assemblies-8fDPA monoglycerides
2018 Algae n-3 DPA diglyceride production fr@&thizochytriumsp. (16.4% oil purity) and crystallization purificati (28%
purity)
2018  Review Current scientific evidence does not support inicigah-3 DPA into the Omega-3 index
Metabolism
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Inflammation and cancer
2018 (wfr:?a;?;] alysis n-3 DPA is positively associated with spirometrieaaures of pulmonary function tests in meta-analyse
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2017  Epidemiological n-3 DPA intake is the mp®tent n-3 LCPUFA associated with slower forcegimtory volume decline in
smokers
2017 Mouse macrophage n-3 DPA increased EPA, n-3 DPA and DHA contentsagtivated RAW264.7 cells, down-regulated mRNA
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Neuro-visual protection
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2016 Review Links between n-3 DPA intake and blood level ingmant and lactating mothers with better neural aone
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developments and fewer allergy diseases.

EPA, eicosapentaenoic acid; DHA, docosahexaendig a€3 DPA, docosapentaenoic acid; LCPUFA, longinlpolyunsaturated fatty
acid(s); PBMC, peripheral blood mononuclear c&BC, red blood cells.



902 Figure 1 —Bioconversion pathways of n-3 and n-6 pglinsaturated fatty acid families

903 A: desaturaseg: elongase, ALA: a-linolenic acid, ADA: adrenic acid, ARA: arachidoniacid, EPA:
904 eicosapentaenoic acid, GLA:linolenic acid, DHA: docosahexaenoic acid, n-3 DPA3 docosapentaenoic acid,
905 LA: linoleic acid, STA: stearidonic acid.

906
907 Figure 2 — Biosynthesis pathway of n-3 docosapenta@c acid-derived metabolites

908 COX: cyclooxygenase, DPA: docosapentaenoic aci@Xfxo derivative, isoP: isoprostane, LOX: lipoxymse,
909 HDPA: hydroxy-DPA, H(p)-DPA: hydro(peroxy)-DPA
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