S. Musacchi and S. Serra, Apple fruit quality: Overview on pre-harvest factors, Sci. Hortic, vol.234, pp.409-430, 2018.

S. Lurie and C. B. Watkins, Superficial scald, its etiology and control, Postharvest Biol. Technol, vol.65, pp.44-60, 2012.

B. D. Whitaker, Genetic and biochimical bases of superficial scald storage disorder in apple and pear fruits, Acta Hortic, pp.47-60, 2013.

B. Farneti, Untargeted metabolomics investigation of volatile compounds involved in the development of apple superficial scald by PTR-ToF-MS, Metabolomics, vol.11, pp.341-349, 2015.

B. D. Whitaker, J. F. Nock, and C. B. Watkins, Peel tissue ?-farnesene and conjugated trienol concentrations during storage of 'White Angel'x'Rome Beauty' hybrid apple selections susceptible and resistant to superficial scald, Postharvest Biol. Technol, vol.20, pp.231-241, 2000.

R. Sabban-amin, O. Feygenberg, E. Belausov, and E. Pesis, Low oxygen and 1-MCP pretreatments delay superficial scald development by reducing reactive oxygen species (ROS) accumulation in stored 'Granny Smith' apples, Postharvest Biol. Technol, vol.62, pp.295-304, 2011.

N. Busatto, Apple fruit superficial scald resistance mediated by ethylene inhibition is associated with diverse metabolic processes, Plant J, vol.93, pp.270-285, 2018.

N. Busatto, Target metabolite and gene transcription profiling during the development of superficial scald in apple (Malus x domestica Borkh), BMC Plant Biol, vol.14, p.193, 2014.

E. Karagiannis, Ethylene -dependent and -independent superficial scald resistance mechanisms in 'Granny Smith' apple fruit, Sci. Rep, vol.8, 2018.

L. Du, J. Song, L. Palmer, S. Fillmore, and Z. Zhang, Quantitative proteomic changes in development of superficial scald disorder and its response to diphenylamine and 1-MCP treatments in apple fruit, Postharvest Biol. Technol, vol.123, pp.33-50, 2017.

N. E. Gapper, Delayed response to cold stress is characterized by successive metabolic shifts culminating in apple fruit peel necrosis, BMC Plant Biol, vol.17, 2017.

R. Leisso, D. Buchanan, J. Lee, J. Mattheis, D. Rudell et al., Cell Membrane, and Volatile Metabolism Are Altered by Antioxidant Treatment, Temperature Shifts, and Peel Necrosis during Apple Fruit Storage, J. Agric. Food Chem, vol.61, pp.1373-1387, 2013.

V. E. Emongor, D. P. Murr, and E. C. Lougheed, Preharvest factors that predispose apples to superficial scald, Postharvest Biol. Technol, vol.4, pp.289-300, 1994.

R. Rai, Implications of changing climate on productivity of temperate fruit crops with special reference to apple, J. Hortic, vol.02, pp.1-6, 2015.

,

T. Thomai, E. Sfakiotakis, G. R. Diamantidis, and M. Vasilakakis, Effects of low preharvest temperature on scald susceptibility and biochemical changes in 'Granny Smith' apple peel, Sci. Hortic, vol.76, pp.1-15, 1998.

C. L. Barden and W. J. Bramlage, Separating the effects of low temperature, ripening, and light on loss of scald susceptibility in apples before harvest, J. Am. Soc. Hortic. Sci, vol.119, pp.54-58, 1994.

C. Moggia, O. Hernández, M. Pereira, A. Lobos, G. Yuri et al., Effect of the cooling system and 1-MCP on the incidence of superficial scald in 'Granny Smith' apples. Chil, J. Agric. Res, vol.69, pp.383-390, 2009.

A. Janská, P. Mar?ík, S. Zelenková, and J. Ovesná, Cold stress and acclimation -what is important for metabolic adjustment, Plant Biol, vol.12, pp.395-405, 2010.

B. Wang and S. Zhu, Pre-storage cold acclimation maintained quality of cold-stored cucumber through differentially and orderly activating ROS scavengers, Postharvest Biol. Technol, vol.129, pp.1-8, 2017.

P. Maul, G. Mccollum, C. L. Guy, and R. Porat, Temperature conditioning alters transcript abundance of genes related to chilling stress in 'Marsh' grapefruit flavedo, Postharvest Biol. Technol, vol.60, pp.177-185, 2011.

F. Carvajal, F. Palma, M. Jamilena, and D. Garrido, Preconditioning treatment induces chilling tolerance in zucchini fruit improving different physiological mechanisms against cold injury: Preconditioning treatment induces chilling tolerance in zucchini fruit, Ann. Appl. Biol, vol.166, pp.340-354, 2015.

B. Mendieta, J. A. Olaeta, R. Pedreschi, and P. Undurraga, Reduction of cold damage during cold storage of Hass avocado by a combined use of pre-conditioning and waxing, Sci. Hortic, vol.200, pp.119-124, 2016.

P. Jin, Low-Temperature Conditioning Alleviates Chilling Injury in Loquat Fruit and Regulates Glycine Betaine Content and Energy Status, J. Agric. Food Chem, vol.63, pp.3654-3659, 2015.

Z. Zhang, Low-temperature conditioning induces chilling tolerance in stored mango fruit, Food Chem, vol.219, pp.76-84, 2017.

Q. Yang, Low-temperature conditioning induces chilling tolerance in 'Hayward' kiwifruit by enhancing antioxidant enzyme activity and regulating en-dogenous hormones levels: Low-temperature conditioning induces chilling tolerance in 'Hayward' kiwifruit, J. Sci. Food Agric, vol.93, pp.3691-3699, 2013.

S. Lê, J. Josse, and F. Husson, FactoMineR: An R Package for Multivariate Analysis, J. Stat. Softw, vol.25, 2008.

S. M. Segonne, Multiscale investigation of mealiness in apple: an atypical role for a pectin methylesterase during fruit maturation, BMC Plant Biol, vol.14, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01210007

R. Velasco, The genome of the domesticated apple (Malus x domestica Borkh, Nat. Genet, vol.42, pp.833-839, 2010.
URL : https://hal.archives-ouvertes.fr/hal-02666876

J. Celton, Widespread anti-sense transcription in apple is correlated with siRNA production and indicates a large potential for transcriptional and/or post-transcriptional control, New Phytol, vol.203, pp.287-299, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01209978

R. Development-core and . Team, R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, 2009.

G. K. Smyth, R. Limma-;-gentleman, V. J. Carey, W. Huber, R. A. Irizarry et al., Linear Models for Microarray Data, Bioinformatics and Computational Biology Solutions Using R and Bioconductor, vol.397, issue.420, 2005.

N. Daccord, High-quality de novo assembly of the apple genome and methylome dynamics of early fruit development, Nat Genet, vol.49, pp.1099-1106, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01602554

M. Lohse, Mercator: a fast and simple web server for genome scale functional annotation of plant sequence data: Mercator: sequence functional annotation server, Plant Cell Environ, vol.37, pp.1250-1258, 2014.

B. Usadel, A guide to using MapMan to visualize and compare Omics data in plants: a case study in the crop species, Maize. Plant Cell Environ, vol.32, pp.1211-1229, 2009.

E. Vergne, Membrane-Targeted HrpN Ea Can Modulate Apple Defense Gene Expression, Mol. Plant. Microbe Interact, vol.27, pp.125-135, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01209957

K. J. Livak and T. D. Schmittgen, Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2???CT Method, Methods, vol.25, pp.402-408, 2001.

P. Krishna and G. Gloor, The Hsp90 family of proteins in Arabidopsis thaliana, Cell Stress Chaperones, vol.6, p.238, 2001.

G. Li, J. Li, R. Hao, and Y. Guo, Activation of catalase activity by a peroxisome-localized small heat shock protein Hsp17.6CII, J. Genet. Genomics, vol.44, pp.395-404, 2017.

I. Neta-sharir, Dual role for tomato heat shock protein 21: protecting photosystem II from oxidative stress and promoting color changes during fruit maturation, Plant Cell, vol.17, pp.1829-1838, 2005.

C. Queitsch, S. Hong, E. Vierling, and S. Lindquist, Heat shock protein 101 plays a crucial role in thermotolerance in Arabidopsis, Plant Cell, vol.12, p.479, 2000.

A. Nishizawa, Arabidopsis heat shock transcription factor A2 as a key regulator in response to several types of environmental stress, Plant J, vol.48, pp.535-547, 2006.

J. An, The bZIP transcription factor MdHY5 regulates anthocyanin accumulation and nitrate assimilation in apple, Hortic. Res, vol.4, p.17023, 2017.

F. Wang, AtMYB12 regulates flavonoids accumulation and abiotic stress tolerance in transgenic Arabidopsis thaliana, Mol. Genet. Genomics, vol.291, pp.1545-1559, 2016.

S. Davletova, The zinc-finger protein Zat12 plays a central role in reactive oxygen and abiotic stress signaling in arabidopsis, PLANT Physiol, vol.139, pp.847-856, 2005.

J. T. Vogel, D. G. Zarka, H. A. Van-buskirk, S. G. Fowler, and M. F. Thomashow, Roles of the CBF2 and ZAT12 transcription factors in configuring the low temperature transcriptome of Arabidopsis: Arabidopsis low temperature transcriptome, Plant J, vol.41, pp.195-211, 2004.

M. Brisset and T. Dugé-de-bernonville, Device for determining or studying the state of stimulation of the natural defences of plants or portions of plants, 2011.

I. Ferguson, W. Snelgar, M. Lay-yee, C. Watkins, and J. Bowen, Expression of heat shock protein genes in apple fruit in the field, Funct. Plant Biol, vol.25, pp.155-163, 1998.

F. Giorno, G. Guerriero, S. Baric, and C. Mariani, Heat shock transcriptional factors in Malus domestica: identification, classification and expression analysis, BMC Genomics, vol.13, p.639, 2012.

J. V. Anderson, Q. B. Li, D. W. Haskell, and C. L. Guy, Structural organization of the spinach endoplasmic reticulum-luminal 70-kilodalton heat-shock cognate gene and expression of 70-kilodalton heat-shock genes during cold acclimation, Plant Physiol, vol.104, p.1359, 1994.

D. Y. Sung, E. Vierling, and C. L. Guy, Comprehensive expression profile analysis of the Arabidopsis Hsp70 gene family, Plant Physiol, vol.126, pp.789-800, 2001.

A. M. Timperio, M. G. Egidi, and L. Zolla, Proteomics applied on plant abiotic stresses: Role of heat shock proteins (HSP), J. Proteomics, vol.71, pp.391-411, 2008.

M. H. Al-whaibi, Plant heat-shock proteins: A mini review, J. King Saud Univ. -Sci, vol.23, pp.139-150, 2011.

C. A. Downs, S. L. Ryan, and S. A. Heckathorn, The chloroplast small heat-shock protein: Evidence for a general role in protecting photosystem II against oxidative stress and photoinhibition, J. Plant Physiol, vol.155, pp.488-496, 1999.

S. Guo, H. Zhou, X. Zhang, X. Li, and Q. Meng, Overexpression of CaHSP26 in transgenic tobacco alleviates photoinhibition of PSII and PSI during chilling stress under low irradiance, J. Plant Physiol, vol.164, pp.126-136, 2007.

C. Qi, SoHSC70 positively regulates thermotolerance by alleviating cell membrane damage, reducing ROS accumulation, and improving activities of antioxidant enzymes, Plant Sci, vol.283, pp.385-395, 2019.

C. H. Foyer and G. Noctor, Ascorbate and glutathione: the heart of the redox hub, Plant Physiol, vol.155, pp.2-18, 2011.

A. Nishizawa, Y. Yabuta, and S. Shigeoka, Galactinol and raffinose constitute a novel function to protect plants from oxidative damage, Plant Physiol, vol.147, pp.1251-1263, 2008.

Y. Hu, Tomato expressing Arabidopsis glutaredoxin gene AtGRXS17 confers tolerance to chilling stress via modulating cold responsive components, Hortic. Res, vol.2, 2015.

R. Edwards, D. P. Dixon, and V. Walbot, Plant glutathione S -transferases: enzymes with multiple functions in sickness and in health, Trends Plant Sci, vol.5, pp.193-198, 2000.

R. A. Dixon and N. L. Paiva, Stress-induced phenylpropanoid metabolism, Plant Cell, vol.7, pp.1085-1097, 1995.

P. J. Christie, M. R. Alfenito, and V. Walbot, Impact of low-temperature stress on general phenylpropanoid and anthocyanin pathways: Enhancement of transcript abundance and anthocyanin pigmentation in maize seedlings, Planta, vol.194, pp.541-549, 1994.

M. Martifnez-tellez and M. Lafuente, Chilling-induced changes in phenylalanine amminia-lyase, peroxidase, and polyphenol oxidase activities in citrus flavedo tissue, Acta Hortic, vol.343, pp.257-263, 1993.

R. M. Rivero, Resistance to cold and heat stress: accumulation of phenolic compounds in tomato and watermelon plants, Plant Sci, vol.160, pp.315-321, 2001.

M. T. Sanchez-ballesta, M. T. Lafuente, L. Zacarias, and A. Granell, Involvement of phenylalanine ammonia-lyase in the response of Fortune mandarin fruits to cold temperature, Physiol. Plant, vol.108, pp.382-389, 2000.

S. Tan, Phenylalanine ammonia-lyase and the phenylalanine ammonia-lyase inactivating system: Effects of light, temperature and mineral deficiencies, Funct. Plant Biol, vol.7, pp.159-167, 1980.

H. , Osmotin: A plant defense tool against biotic and abiotic stresses, Plant Physiol. Biochem, vol.123, pp.149-159, 2018.

Z. Hong, K. Lakkineni, Z. Zhang, and D. P. Verma, Removal of feedback inhibition of 1-Pyrroline-5-Carboxylate Synthetase results in increased proline accumulation and protection of plants from osmotic stress, vol.122, 2000.

K. Subramanyam, K. V. Sailaja, K. Subramanyam, D. Muralidhara-rao, and K. Lakshmidevi, Ectopic expression of an osmotin gene leads to enhanced salt tolerance in transgenic chilli pepper (Capsicum annum L.). Plant Cell Tissue Organ Cult, PCTOC, vol.105, pp.181-192, 2011.

B. Zhu, T. H. Chen, and P. H. Li, Activation of two osmotin-like protein genes by abiotic stimuli and fungal pathogen in transgenic potato plants, Plant Physiol, vol.108, p.929, 1995.

A. Baxter, R. Mittler, and N. Suzuki, ROS as key players in plant stress signalling, J. Exp. Bot, vol.65, pp.1229-1240, 2014.

G. Noctor, J. Reichheld, and C. H. Foyer, ROS-related redox regulation and signaling in plants, Semin. Cell Dev. Biol, vol.80, pp.3-12, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02115980

Z. Ju, Y. Yuan, C. Liu, S. Zhan, and M. Wang, Relationships among simple phenol, flavonoid and anthocyanin in apple fruit peel at harvest and scald susceptibility, Postharvest Biol. Technol, vol.8, pp.83-93, 1996.

C. Huan, Potential role of reactive oxygen species and antioxidant genes in the regulation of peach fruit development and ripening, Plant Physiol. Biochem, vol.104, pp.294-303, 2016.

A. Jimenez, Changes in oxidative processes and components of the antioxidant system during tomato fruit ripening, Planta, vol.214, pp.751-758, 2002.

I. Lentheric, E. Pinto, M. Vendrell, and C. Larrigaudiere, Harvest date affects the antioxidative systems in pear fruits, J. Hortic. Sci. Biotechnol, vol.74, pp.791-795, 1999.

C. G. Bartoli, C. A. Casalongué, M. Simontacchi, B. Marquez-garcia, and C. H. Foyer, Interactions between hormone and redox signalling pathways in the control of growth and cross tolerance to stress, Environ. Exp. Bot, vol.94, pp.73-88, 2013.

W. R. Swindell, M. Huebner, and A. P. Weber, Transcriptional profiling of Arabidopsis heat shock proteins and transcription factors reveals extensive overlap between heat and non-heat stress response pathways, BMC Genomics, vol.8, pp.125-125, 2007.